Exploring Nonclassical States for Quantum Metrology via Quantum Resource Theory
通过量子资源理论探索量子计量的非经典态
基本信息
- 批准号:2210460
- 负责人:
- 金额:$ 18.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory. Development in this field will not only improve our understanding of the fundamental underpinnings of nature, but also advance national security and technology. Nonclassical states of light are essential resources for achieving enhanced sensitivity in quantum metrology. Quantitative understanding of these states as a resource for quantum-enhanced tasks is crucial for practical sensing applications. However, such a perspective on nonclassical states for quantum metrology is not fully developed. This project will take the new perspective to investigate methods of quantifying nonclassical states in the framework of a resource theory for quantum-enhanced metrology. The results of this project could provide new schemes for performing quantum metrology using nonclassical states and motivate new experiments, which will build the foundations for future quantum technologies. Broader impacts of this project include training graduate students in theoretical quantum physics, providing research opportunities for advanced undergraduates, and building a diverse workforce in quantum information science.This project is at the intersection of three research frontiers: quantum metrology, nonclassical states, and quantum resource theories. Quantum resource theories provide a powerful framework for studying quantum phenomena from a new foundational perspective. Based on the resource theory of nonclassicality, the PI’s group will investigate quantum channels of modeling optical loss of a nonclassical state and the metrological power of a nonclassical state in an optical lossy environment for exploring robust states for quantum metrology. The PI’s group will also study resource-theory tasks in manipulating these nonclassical states for metrology. These tasks will help to understand quantitatively what operations can enhance the resource of a state and what operations can reduce the nonclassicality. The PI’s group will investigate the distribution of nonclassicality of a state in a linear network using the resource theory. The outcomes of the designated research can provide new schemes of experiments in quantum metrology and develop a deeper understanding of nonclassicality as a resource for quantum information science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计量学是利用量子理论对物理参数进行高分辨率和高灵敏度测量的研究。这一领域的发展不仅将提高我们对自然的根本基础的理解,而且还将促进国家安全和技术。光的非经典态是实现量子计量学中增强灵敏度的必要资源。定量了解这些状态作为量子增强任务的资源对于实际传感应用至关重要。然而,这样的角度对非经典状态的量子计量学还没有完全发展。本计画将以量子增强计量学的资源理论为架构,从新的角度探讨非经典态的量化方法。该项目的结果可以为使用非经典态进行量子计量提供新的方案,并激发新的实验,这将为未来的量子技术奠定基础。该项目的更广泛影响包括培养理论量子物理学的研究生,为高年级本科生提供研究机会,并在量子信息科学领域建立多元化的劳动力。该项目处于三个研究前沿的交叉点:量子计量学,非经典态和量子资源理论。量子资源理论为从一个新的基础视角研究量子现象提供了一个强有力的框架。基于非经典性的资源理论,PI的小组将研究模拟非经典态的光损耗和非经典态在光损耗环境中的光功率的量子信道,以探索量子计量学的鲁棒态。PI的小组还将研究在计量学中操纵这些非经典状态的资源理论任务。这些任务将有助于定量地理解哪些操作可以增强状态的资源,哪些操作可以减少非经典性。PI的小组将使用资源理论研究线性网络中状态的非经典性分布。指定研究的成果可以为量子计量学提供新的实验方案,并作为量子信息科学的资源对非经典性进行更深入的理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenchao Ge其他文献
Hamiltonian Amplification: Another Application of Parametric Amplification
哈密顿放大:参数放大的另一种应用
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wenchao Ge - 通讯作者:
Wenchao Ge
Stroboscopic approach to trapped-ion quantum information processing with squeezed phonons.
利用压缩声子进行俘获离子量子信息处理的频闪方法。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Wenchao Ge;B. Sawyer;J. Britton;K. Jacobs;M. Foss;J. Bollinger - 通讯作者:
J. Bollinger
Toward improved quantum simulations and sensing with trapped two-dimensional ion crystals via parametric amplification
通过参量放大改进俘获二维离子晶体的量子模拟和传感
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
M. Affolter;Wenchao Ge;B. Bullock;S. Burd;K. Gilmore;J. Lilieholm;A. Carter;J. Bollinger - 通讯作者:
J. Bollinger
Demonstration of a Phonon Laser with a Nanosphere Levitated in an Optical Tweezer
光镊中悬浮纳米球的声子激光器演示
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
R. Pettit;Wenchao Ge;P. Kumar;Danika R. Luntz;J. Schultz;L. Neukirch;M. Bhattacharya;A. N. Vamivakas - 通讯作者:
A. N. Vamivakas
Wenchao Ge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenchao Ge', 18)}}的其他基金
Exploring Nonclassical States for Quantum Metrology via Quantum Resource Theory
通过量子资源理论探索量子计量的非经典态
- 批准号:
2243591 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
Standard Grant
相似海外基金
Nonclassical β-catenin signaling in odontogenesis
牙发生中的非经典β-连环蛋白信号传导
- 批准号:
10714280 - 财政年份:2023
- 资助金额:
$ 18.18万 - 项目类别:
QuSeC-TAQS: Quantum Sensing with Strongly Nonclassical Light Based on Third-Order Nonlinearities
QuSeC-TAQS:基于三阶非线性的强非经典光量子传感
- 批准号:
2326792 - 财政年份:2023
- 资助金额:
$ 18.18万 - 项目类别:
Continuing Grant
Exploring Nonclassical States for Quantum Metrology via Quantum Resource Theory
通过量子资源理论探索量子计量的非经典态
- 批准号:
2243591 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
Standard Grant
Determining cell-type specificity for a nonclassical MHC class I during an activity-dependent cortical critical period.
确定活动依赖性皮质关键期非经典 MHC I 类的细胞类型特异性。
- 批准号:
10705621 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
Determining cell-type specificity for a nonclassical MHC class I during an activity-dependent cortical critical period.
确定活动依赖性皮质关键期非经典 MHC I 类的细胞类型特异性。
- 批准号:
10426738 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
Determining the Origins of Nonclassical Class I molecules through Molecular and Functional Approaches
通过分子和功能方法确定非经典 I 类分子的起源
- 批准号:
10501472 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
Determining the Origins of Nonclassical Class I molecules through Molecular and Functional Approaches
通过分子和功能方法确定非经典 I 类分子的起源
- 批准号:
10645114 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
Nonclassical Discrete Optimization Problems
非经典离散优化问题
- 批准号:
RGPIN-2018-05066 - 财政年份:2021
- 资助金额:
$ 18.18万 - 项目类别:
Discovery Grants Program - Individual
Nonclassical mechanisms to modify and control organic crystal nucleation and growth
修改和控制有机晶体成核和生长的非经典机制
- 批准号:
2128121 - 财政年份:2021
- 资助金额:
$ 18.18万 - 项目类别:
Continuing Grant
Nonclassical Discrete Optimization Problems
非经典离散优化问题
- 批准号:
RGPIN-2018-05066 - 财政年份:2020
- 资助金额:
$ 18.18万 - 项目类别:
Discovery Grants Program - Individual