QuSeC-TAQS: Quantum Sensing with Strongly Nonclassical Light Based on Third-Order Nonlinearities
QuSeC-TAQS:基于三阶非线性的强非经典光量子传感
基本信息
- 批准号:2326792
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Optical quantum sensing holds promise for revolutionizing extremely sensitive detection of various physical quantities such as molecular spectra or frequencies by harnessing resources such as quantum correlations and entanglement. In fact, it is already deployed in niche areas such as gravitational wave detectors. However, several unsolved challenges remain that prevent widespread adoption of quantum sensors at scale compared to classical counterparts. For example, stringent demands on vacuum-compatibility and low-temperature operation combined with the substantial additional complexity to generate the fragile quantum resources often limit the environments in which these quantum sensors can be widely deployed. The team aims to overcome these limitations using room-temperature quantum sources generating what is called squeezed light that take advantage of quantum correlations to reduce noise below classical bounds. This multidisciplinary team combines cross-cutting expertise in applied physics, quantum science, electrical engineering, biophysics, mechanical engineering, materials science, nanofabrication and bioengineering. The quantum light sources developed under the program will be on-chip, compact, scalable, and mass-manufacturable through advanced nanofabrication techniques, allowing for the planned seamless integration with the sensors. Additionally, the team will contribute to training a quantum-ready workforce through collaborative work with federal labs, by providing multidisciplinary mentoring of graduate and undergraduate students, and by designing new tailored curricula on emerging quantum technologies.The project combines fundamental innovations in the generation and detection of quantum light with practical advances in device design towards scalable integrated systems that exhibit improved sensing performance. The effort will develop three platforms for quantum light generation – all based on the ubiquitous third-order Kerr nonlinearity, but with different levels of maturity – towards quantum sensing applications. The quantum resources harnessed in this project for enhanced sensing consist of nonclassical states of light called squeezed states, which exhibit quantum noise reduction below that of the vacuum. These three platforms of rubidium vapor, silicon nitride and silicon carbide have their unique advantages such as ultralow loss, high confinement or large parametric gain, but the integrated nanophotonic platforms have been stymied by low squeezing levels. To overcome this, the goals of the project include the generation of large squeezing levels over wide wavelength ranges using four-wave mixing on nanofabricated chip-scale platforms and their integration with the quantum sensors. The improvements in squeezing levels will be achieved through innovations in noise suppression, device design, precise dispersion engineering and multi-frequency analysis. A wide variety of quantum sensors will benefit from the strong quantum noise reduction inherent to squeezed light and their close integration with the sensor. Overall, the project promotes advances in quantum sensing by increasing access to portable, frequency-agile strongly nonclassical light sources in relatively compact and stable atomic vapors and especially in integrated nanophotonic chip-scale platforms. This project was co-funded by the Quantum Sensors Challenge for Transformative Advances in Quantum Systems (QuSeC-TAQS) program, and the Office of International Science and Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光学量子传感有望通过利用量子相关和纠缠等资源,彻底改变对分子光谱或频率等各种物理量的极灵敏检测。事实上,它已经部署在引力波探测器等利基领域。然而,与经典传感器相比,仍然存在一些未解决的挑战,这些挑战阻碍了量子传感器的广泛采用。例如,对真空兼容性和低温操作的严格要求,加上产生脆弱量子资源的大量额外复杂性,往往限制了这些量子传感器可以广泛部署的环境。该团队的目标是利用室温量子源来克服这些限制,这些量子源产生所谓的压缩光,利用量子相关性将噪声降低到经典界限以下。这个多学科团队结合了应用物理学,量子科学,电气工程,生物物理学,机械工程,材料科学,纳米纤维和生物工程的跨领域专业知识。根据该计划开发的量子光源将通过先进的纳米纤维技术实现片上、紧凑、可扩展和大规模制造,从而实现与传感器的无缝集成。此外,该团队还将通过与联邦实验室的合作,为培养量子就绪的劳动力做出贡献,为研究生和本科生提供多学科指导,该项目将量子光产生和检测方面的基本创新与器件设计方面的实际进展相结合,以实现可扩展的集成系统,从而改善传感性能。性能这项工作将开发三个量子光产生平台-都基于无处不在的三阶克尔非线性,但成熟度不同-面向量子传感应用。该项目中用于增强传感的量子资源包括称为压缩态的非经典光态,其表现出低于真空的量子噪声降低。铷蒸气、氮化硅和碳化硅这三种平台都有其独特的优势,如超低损耗、高约束或大参量增益,但低压缩水平一直阻碍着集成化纳米光子平台的发展。为了克服这一点,该项目的目标包括在纳米制造的芯片级平台上使用四波混频在宽波长范围内产生大的压缩水平,并将其与量子传感器集成。压缩水平的提高将通过噪声抑制、器件设计、精确色散工程和多频分析的创新来实现。各种各样的量子传感器将受益于压缩光固有的强量子噪声降低及其与传感器的紧密集成。总体而言,该项目通过增加在相对紧凑和稳定的原子蒸气中,特别是在集成纳米光子芯片级平台中使用便携式、频率捷变的强非经典光源,促进了量子传感领域的进步。该项目由量子传感器挑战量子系统变革性进展(QuSeC-TAQS)计划和国际科学与工程办公室共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avik Dutt其他文献
Dynamic control of 2D non-Hermitian photonic corner skin modes in synthetic dimensions
合成维度中二维非厄米光子角皮模式的动态控制
- DOI:
10.1038/s41467-024-55236-4 - 发表时间:
2024-12-30 - 期刊:
- 影响因子:15.700
- 作者:
Xinyuan Zheng;Mahmoud Jalali Mehrabad;Jonathan Vannucci;Kevin Li;Avik Dutt;Mohammad Hafezi;Sunil Mittal;Edo Waks - 通讯作者:
Edo Waks
Nonlinear and quantum photonics using integrated optical materials
使用集成光学材料的非线性和量子光子学
- DOI:
10.1038/s41578-024-00668-z - 发表时间:
2024-05-01 - 期刊:
- 影响因子:86.200
- 作者:
Avik Dutt;Aseema Mohanty;Alexander L. Gaeta;Michal Lipson - 通讯作者:
Michal Lipson
Roadmap on topological photonics
- DOI:
10.1088/2515-7647/ac4ee4 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Hannah Price;Yidong Chong;Alexander Khanikaev;Henning Schomerus;Lukas J. Maczewsky;Mark Kremer;Matthias Heinrich;Alexander Szameit;Oded Zilberberg;Yihao Yang;Baile Zhang;Andrea Alù;Ronny Thomale;Iacopo Carusotto;Philippe St-Jean;Alberto Amo;Avik Dutt;Luqi - 通讯作者:
Luqi
Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons
- DOI:
doi.org/10.1364/PRJ.396731 - 发表时间:
2020 - 期刊:
- 影响因子:7.6
- 作者:
Luqi Yuan;Avik Dutt;Mingpu Qin;Shanhui Fan;Xianfeng Chen - 通讯作者:
Xianfeng Chen
Avik Dutt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing
QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器
- 批准号:
2326784 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant