Discriminant Analysis in High-Dimensional Latent Factor Models
高维潜因子模型中的判别分析
基本信息
- 批准号:2210557
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project concerns classification of high-dimensional features, an important part of statistical learning theory. The project will formulate high-dimensional latent factor models that have a low-dimensional, hidden structure to guarantee successful statistical classification performance based on suitable projections of the high-dimensional data. Results of this research are expected to advance understanding on how to achieve optimal classification. This project has important applications to recent advances in immunology and cancer studies, which revealed that hidden mechanisms can be directly connected to health outcomes. This project offers a principled way to analyze such high-dimensional datasets and will provide computationally efficient classification rules. The project will involve collaboration with computational biologists to validate the new models and methodology.Specifically, this project constructs novel classifiers based on principal component analysis with a necessary debiasing part followed by linear discriminant analysis and develops their statistical and computational properties. This project focuses on study of the important subclass of tuning-free classifiers that interpolate the data, but still possess good predictive power. In addition, this research aims to develop minimax adaptive bounds for the excess misclassification error under general latent factor model specifications and to prove that the new methods achieve these bounds, thereby establishing their rate optimality. Finally, the usefulness of the new techniques will be demonstrated via applications to data from immunology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目涉及高维特征的分类,这是统计学习理论的重要组成部分。该项目将制定具有低维隐藏结构的高维潜在因素模型,以保证基于高维数据的适当预测的成功统计分类性能。这项研究的结果,预计将促进了解如何实现最佳分类。该项目对免疫学和癌症研究的最新进展有重要的应用,这些研究揭示了隐藏的机制可以直接与健康结果联系起来。该项目提供了一种分析这种高维数据集的原则性方法,并将提供计算效率高的分类规则。该项目将与计算生物学家合作,以验证新的模型和方法。具体而言,该项目将构建基于主成分分析的新型分类器,其中必要的去偏部分随后是线性判别分析,并开发其统计和计算特性。这个项目的重点是研究的重要子类的无调谐分类器,插值的数据,但仍然具有良好的预测能力。此外,本研究的目的是开发minimax自适应边界的过度误分类错误下一般潜在因素模型的规格,并证明新的方法实现这些界限,从而建立其速率最优。最后,新技术的实用性将通过应用于免疫学数据来证明。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Likelihood estimation of sparse topic distributions in topic models and its applications to Wasserstein document distance calculations
- DOI:10.1214/22-aos2229
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Xin Bing;F. Bunea;Seth Strimas-Mackey;M. Wegkamp
- 通讯作者:Xin Bing;F. Bunea;Seth Strimas-Mackey;M. Wegkamp
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marten Wegkamp其他文献
Marten Wegkamp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marten Wegkamp', 18)}}的其他基金
Estimation of High Dimensional Matrices of Low Effective Rank with Applications to Structural Copula Models
低有效秩高维矩阵的估计及其在结构 Copula 模型中的应用
- 批准号:
1310119 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Sparsity oracle inequalities via l_1 regularization in nonparametric models
非参数模型中通过 l_1 正则化实现稀疏预言不等式
- 批准号:
0706829 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Vision analysis system using inferred three-dimensional data to analyze and correct a user’s pose in relation to 3D space
I-Corps:视觉分析系统,使用推断的三维数据来分析和纠正用户相对于 3D 空间的姿势
- 批准号:
2403992 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
- 批准号:
23H03353 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of high-dimensional optical analysis technology for preservation and restoration of cultural properties
开发用于文化遗产保护和修复的高维光学分析技术
- 批准号:
23H00499 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of urodynamics analysis method using three-dimensional images
利用三维图像的尿动力学分析方法的开发
- 批准号:
23K08782 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Robust Three-Dimensional Pattern Recognition based on Object Oriented Data Analysis
基于面向对象数据分析的鲁棒三维模式识别
- 批准号:
23K16900 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nonequilibrium carrier dynamics in two-dimensional heterostructures developed by nanosecond pulse transport analysis
通过纳秒脉冲输运分析开发二维异质结构中的非平衡载流子动力学
- 批准号:
23KK0090 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Identification and analysis of the three-dimensional solar plasma flows
三维太阳等离子体流的识别与分析
- 批准号:
2884318 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
Understanding of 3-dimensional seismic behavior of RC frame high-speed railway/highway viaducts using FE analysis
使用有限元分析了解 RC 框架高速铁路/公路高架桥的 3 维抗震性能
- 批准号:
23H01489 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of three-dimensional image analysis technology in the echographic diagnosis for developmental dysplasia of the hip.
三维图像分析技术在发育性髋关节发育不良超声诊断中的进展
- 批准号:
23K08671 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)