Methodology for Qualitative Constraints in Semi-Parametric Models

半参数模型中的定性约束方法

基本信息

  • 批准号:
    2210662
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Qualitative constraints such as concavity (law of diminishing returns) are ubiquitous in social sciences and economics. In order to incorporate these important constraints into statistical modeling, users often resort to simpler models, for example, linear regression. However, these simpler models are inflexible and cannot fully explain complex scientific phenomena. In turn, semi-parametric models provide necessary flexibility and interpretability. However, in fitting these semi-parametric models, qualitative constraints are often left unexploited. Ignoring these constraints, will not only lead to a loss in interpretability but also forgo some accuracy in the performance of the estimates. The broad goal of this proposal is to develop new statistical methods that respect subject matter qualitative constraints and make such methods more accessible to researchers via open-source software implementation.This project has three main aims: (1) to develop general non-parametric regression estimators that account for available subject matter constraints and adapt to the smoothness of the underlying truth; (2) to explore systematic approaches for semi-parametric estimators that incorporate naturally occurring shape constraints on the nuisance components; and (3) to assess improved doubly robust estimators of functionals that can be represented in terms of variationally dependent nuisance parameters, whose relationship is shape-constrained on a subject matter basis. This in return would allow for significant improvement of estimation accuracy, thereby outperforming the existing tools that do not incorporate such information. The results of the project will find utility in addressing the interpretability and reproducibility concerns that have recently emerged in a broad range of domain knowledge disciplines, from social sciences to economics to epidemiology. The project will offer a multitude of opportunities for research training and professional development of the next generation of statisticians and will also engage in bolstering diversity in statistical sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
诸如凹的定性约束(回报率降低)在社会科学和经济学中无处不在。为了将这些重要约束结合到统计建模中,用户通常会诉诸更简单的模型,例如线性回归。但是,这些简单的模型不灵活,无法完全解释复杂的科学现象。反过来,半参数模型提供了必要的灵活性和解释性。但是,在拟合这些半参数模型时,定性约束通常无法解释。忽略这些限制,不仅会导致可解释性损失,而且还会放弃估计性的精确度。该提案的广泛目标是开发新的统计方法,这些方法尊重主题的定性约束,并通过开源软件实施使研究人员更容易访问此类方法。该项目具有三个主要目的:(1)开发一般的非参数回归估算值,以说明一般的非参数估算值,以说明可用的主题约束并适应下层真实的平稳性; (2)探索半参数估计器的系统方法,这些估计量包含在滋扰组件上的天然形状约束; (3)评估可以用变异依赖的滋扰参数来表示功能的双重稳健估计器,其关系在主题基础上被形状约束。作为回报,这将使估计准确性显着提高,从而优于不包含此类信息的现有工具。该项目的结果将找到解决方案,以解决最近在从社会科学到经济学到流行病学的广泛领域知识学科中出现的可解释性和可重复性问题。该项目将为下一代统计学家的研究培训和专业发展提供多种机会,还将参与统计科学领域的多样性。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arun Kuchibhotla其他文献

Arun Kuchibhotla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arun Kuchibhotla', 18)}}的其他基金

Central Limit Theorems and Inference in High Dimensions
高维中心极限定理和推理
  • 批准号:
    2113611
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

基于拓扑约束理论对中硼硅药用玻璃化学稳定性的研究
  • 批准号:
    52372006
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
挤压性软岩地层TBM掘进隧洞钢管混凝土拱架空间约束效应与稳定性评价方法研究
  • 批准号:
    52309132
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磁约束聚变等离子体中低杂波参量不稳定性的理论研究和程序发展
  • 批准号:
    12335014
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
出行者按时到达约束下考虑路况预测不确定性的鲁棒路径规划方法研究
  • 批准号:
    52302377
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于萌现约束的中国水循环未来变化预估及不确定性分析
  • 批准号:
    42301018
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Basis for Cognitive Constraints in Rational Inattention Model
理性注意力不集中模型中认知约束的基础
  • 批准号:
    22K01395
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Micro triage decisions and moral distress during the COVID - 19 pandemic in critical care providers: A cross-provincial case study
COVID-19 大流行期间重症监护提供者的微观分诊决策和道德困扰:跨省案例研究
  • 批准号:
    486148
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship Programs
Market Design Analysis of Resource Allocation with Redistribution Constraints
具有再分配约束的资源配置的市场设计分析
  • 批准号:
    18KK0342
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
An Investigation into Cross-Domain Constraints on Copula Distribution from a Dynamic Perspective
动态视角下Copula分布的跨域约束研究
  • 批准号:
    19K00683
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on well-posedness for quasilinear partial differential equations with constraints
带约束的拟线性偏微分方程的适定性研究
  • 批准号:
    17K05294
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了