Methodology for Qualitative Constraints in Semi-Parametric Models
半参数模型中的定性约束方法
基本信息
- 批准号:2210662
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Qualitative constraints such as concavity (law of diminishing returns) are ubiquitous in social sciences and economics. In order to incorporate these important constraints into statistical modeling, users often resort to simpler models, for example, linear regression. However, these simpler models are inflexible and cannot fully explain complex scientific phenomena. In turn, semi-parametric models provide necessary flexibility and interpretability. However, in fitting these semi-parametric models, qualitative constraints are often left unexploited. Ignoring these constraints, will not only lead to a loss in interpretability but also forgo some accuracy in the performance of the estimates. The broad goal of this proposal is to develop new statistical methods that respect subject matter qualitative constraints and make such methods more accessible to researchers via open-source software implementation.This project has three main aims: (1) to develop general non-parametric regression estimators that account for available subject matter constraints and adapt to the smoothness of the underlying truth; (2) to explore systematic approaches for semi-parametric estimators that incorporate naturally occurring shape constraints on the nuisance components; and (3) to assess improved doubly robust estimators of functionals that can be represented in terms of variationally dependent nuisance parameters, whose relationship is shape-constrained on a subject matter basis. This in return would allow for significant improvement of estimation accuracy, thereby outperforming the existing tools that do not incorporate such information. The results of the project will find utility in addressing the interpretability and reproducibility concerns that have recently emerged in a broad range of domain knowledge disciplines, from social sciences to economics to epidemiology. The project will offer a multitude of opportunities for research training and professional development of the next generation of statisticians and will also engage in bolstering diversity in statistical sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在社会科学和经济学中,诸如凹凸性(收益递减规律)之类的定性约束无处不在。为了将这些重要的约束合并到统计建模中,用户经常求助于更简单的模型,例如线性回归。然而,这些简单的模型缺乏灵活性,不能完全解释复杂的科学现象。反过来,半参数模型提供了必要的灵活性和可解释性。然而,在拟合这些半参数模型时,通常没有利用定性约束。忽略这些约束不仅会导致可解释性的损失,而且还会在评估的执行中放弃一些准确性。该提案的总体目标是开发新的统计方法,这些方法尊重主题的定性限制,并通过开源软件实现使研究人员更容易使用这些方法。该项目有三个主要目标:(1)开发一般的非参数回归估计器,该估计器考虑了可用的主题约束并适应潜在真理的平滑性;(2)探索半参数估计的系统方法,其中包括对干扰分量的自然形状约束;(3)评估改进的双鲁棒函数估计器,这些函数可以用变量相关的干扰参数表示,其关系在主题基础上受到形状约束。作为回报,这将大大提高估计的准确性,从而优于不包含此类信息的现有工具。该项目的结果将有助于解决最近在从社会科学到经济学到流行病学的广泛领域知识学科中出现的可解释性和可重复性问题。该项目将为下一代统计学家的研究培训和专业发展提供大量机会,并将促进统计科学的多样性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arun Kuchibhotla其他文献
Arun Kuchibhotla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arun Kuchibhotla', 18)}}的其他基金
Central Limit Theorems and Inference in High Dimensions
高维中心极限定理和推理
- 批准号:
2113611 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
- 批准号:
2343087 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Social and structural determinants of injection drug use-associated bacterial and fungal infections: A qualitative systematic review and thematic synthesis
注射吸毒相关细菌和真菌感染的社会和结构决定因素:定性系统评价和主题综合
- 批准号:
495316 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Drug decriminalization in British Columbia: An equity-oriented qualitative research project
不列颠哥伦比亚省的毒品非刑事化:一个以公平为导向的定性研究项目
- 批准号:
480086 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Operating Grants
Impact of COVID-19 on Elderly Widows in Single-Person Household: A qualitative longitudinal study
COVID-19 对单人家庭老年寡妇的影响:一项定性纵向研究
- 批准号:
23K18823 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Combining Qualitative and Quantitative AI data for mobility
结合移动性的定性和定量人工智能数据
- 批准号:
10080158 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Collaborative R&D
A Qualitative Study on Attitudes toward Multicultural Conviviality among Foreigners and Japanese in the Japanese Society
日本社会中外国人和日本人对多元文化共融态度的定性研究
- 批准号:
23K00601 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
People living with HIV (PLWH), Oral and Oropharyngeal Cancer, and Health Equity: A Qualitative Study
HIV 感染者 (PLWH)、口腔癌和口咽癌以及健康公平:定性研究
- 批准号:
10762901 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Experiences of Bowel Self-Management in Adults with Spina Bifida: A Qualitative Descriptive Study
脊柱裂成人肠道自我管理的经验:一项定性描述性研究
- 批准号:
10607289 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Qualitative comparative study of the micro-foundations of the complex life cycle of entrepreneurial ecosystems
创业生态系统复杂生命周期微观基础的定性比较研究
- 批准号:
23H00845 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




