Studies on well-posedness for quasilinear partial differential equations with constraints

带约束的拟线性偏微分方程的适定性研究

基本信息

  • 批准号:
    17K05294
  • 负责人:
  • 金额:
    $ 2.83万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2017
  • 资助国家:
    日本
  • 起止时间:
    2017-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
双曲型単独保存則とエントロピー解
双曲奇异守恒定律与熵解
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ishiwata Satoshi;Kawabi Hiroshi;Namba Ryuya;渡邉 紘
  • 通讯作者:
    渡邉 紘
Kobayashi-Warren-Carter システムの1次元結晶構造解に対する時間局所存在定理
小林-沃伦-卡特系统一维晶体结构解的时间局部存在定理
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    白川 健;渡邉 紘
  • 通讯作者:
    渡邉 紘
非等方的拡散項を持つ非局所的放物型・双曲型保存則系の適切性
具有各向异性扩散项的非局部抛物线/双曲守恒定律系统的适用性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sergio Albeverio;Hiroshi Kawabi;Stefan-Radu Mihalache;MIchael Roeckner;渡邉 紘
  • 通讯作者:
    渡邉 紘
放物型・双曲型保存則と楕円型方程式の連立系に対する可解性
抛物线/双曲守恒定律和椭圆方程联立系统的可解性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masato Hoshino;Hiroshi Kawabi;Seiichiro Kusuoka;渡邉紘;渡邉紘
  • 通讯作者:
    渡邉紘
An approximation theorem of Lax type for evolution operators of Lipschitz operators in a metric space
度量空间中Lipschitz算子演化算子的​​Lax型逼近定理
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matsumoto Toshitaka其他文献

Evolution equations governed by quasilinear operators satisfying Caratheodory’s conditions
由满足卡拉西奥多里条件的拟线性算子控制的演化方程
  • DOI:
    10.4064/dm836-10-2021
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Matsumoto Toshitaka;Oka Hirokazu;Tanaka Naoki
  • 通讯作者:
    Tanaka Naoki
一般化された安定性条件の下での線形発展作用素の生成について
广义稳定条件下线性演化算子的​​生成
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matsumoto Toshitaka;Tanaka Naoki
  • 通讯作者:
    Tanaka Naoki

Matsumoto Toshitaka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

(特異的な)代数多様体の安定性条件の非可換極小モデルプログラム
(奇异)代数簇稳定性条件的非交换最小模型程序
  • 批准号:
    24KJ0713
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Bridgeland安定性条件の位相的データ解析への応用
Bridgeland稳定性条件在拓扑数据分析中的应用
  • 批准号:
    24K06872
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
連接層の導来圏における変形とBridgelandの安定性条件
连接层派生类别中的变形和 Bridgeland 稳定性条件
  • 批准号:
    22KJ0180
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
周期と安定性条件の対応によるホモロジー的ミラー対称性の精密な理解
通过周期与稳定条件的对应关系精确理解同调镜像对称性
  • 批准号:
    22K03294
  • 财政年份:
    2022
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
射の圏の安定性条件に関する研究
态射范畴的稳定性条件研究
  • 批准号:
    21K03212
  • 财政年份:
    2021
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
多元環の導来圏と安定性条件による実Grothendieck群の部屋構造
基于代数派生范畴和稳定条件的实格罗腾迪克群的房间结构
  • 批准号:
    20J00088
  • 财政年份:
    2020
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mathematical analysis based on the new stability condition for dissipative systems of partial differential equations
基于新的偏微分方程耗散系统稳定性条件的数学分析
  • 批准号:
    18K03369
  • 财政年份:
    2018
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
安定性条件を用いた双有理幾何学の研究
使用稳定性条件研究双有理几何
  • 批准号:
    17J00664
  • 财政年份:
    2017
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
準傾複体とBridgeland安定性条件による導来圏の研究
使用准倾斜复合体和布里奇兰稳定性条件研究派生类别
  • 批准号:
    12F02318
  • 财政年份:
    2012
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了