Reconfigurable Neuromorphic Computing to enable Energy-Efficient Edge Intelligence

可重构神经形态计算实现节能边缘智能

基本信息

  • 批准号:
    2210804
  • 负责人:
  • 金额:
    $ 33.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

The goal of this project is to develop an energy-efficient and smart extreme edge device by taking inspiration from the human brain. Extreme edge devices can enable a variety of applications. Specifically, the devices can be used for remote tracking of rapid changes in the arctic, autonomous navigation of aerial and ground robots for deep space exploration, and monitoring and securing critical infrastructure. However, the current technology requires remotely sensed data to be processed in the cloud. This framework has several drawbacks, such as the delay between sensing and decision, shorter battery life due to high power consumption, and privacy concerns related to data transfer. The hardware developed as part of this proposal will seek to address the previously noted challenges and will advance the state-of-the-art in extreme edge devices. Specifically, the grant will enable the development of a reconfigurable brain-inspired processor with the capacity to learn based on input data. The hardware developed as part of this proposal will be used to train and motivate the next generation of students in the areas of microelectronics. Further, the hardware developed will use open-source computer aided design tools to enable broader dissemination of the developed technology. The study proposes to develop a reconfigurable mixed-signal neuromorphic hardware for processing data at the extreme edge. This proposal aims to increase the energy efficiency of neuromorphic hardware by employing mixed-signal circuits to model the neurons and synapses. Further, we propose to incorporate programmable mixed-signal circuit topologies and explore techniques to co-optimize the hardware and software models to learn and adapt the network parameters in the presence of mismatch and variations. In addition, the proposal will also explore circuit topologies to perform learning on-chip. Based on these individual elements, the proposal will investigate a system architecture to develop reconfigurable hardware that can compile a spiking neural network with the capability to learn on-chip for performing extreme edge tasks. The extreme edge task we plan to validate the developed hardware is object detection using openly available datasets and a quadcopter with a limited battery capacity to perform object detection. The proposal will address the knowledge gaps in designing a learning algorithm for a mixed-signal spiking neural network with variation and mismatch, circuit topologies and system architecture for performing on-chip learning with limited resources, and advance the state-of-the-art in energy-efficient neuromorphic hardware.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是通过从人类大脑中汲取灵感,开发一种节能和智能的极端边缘设备。极端边缘设备可以实现各种应用。具体来说,这些设备可用于远程跟踪北极的快速变化,用于深空探测的空中和地面机器人的自主导航,以及监控和保护关键基础设施。然而,目前的技术需要在云中处理遥感数据。这种框架有几个缺点,例如感测和决策之间的延迟,由于高功耗导致的电池寿命较短,以及与数据传输相关的隐私问题。作为该提案的一部分开发的硬件将寻求解决之前提到的挑战,并将推进极端边缘设备的最新技术。具体来说,这笔赠款将用于开发一种可重新配置的大脑启发处理器,该处理器具有根据输入数据进行学习的能力。 作为该提案的一部分开发的硬件将用于培训和激励微电子领域的下一代学生。此外,开发的硬件将使用开放源码计算机辅助设计工具,以便更广泛地传播开发的技术。 该研究提出了开发一种可重构的混合信号神经形态硬件,用于处理极端边缘的数据。该提案旨在通过采用混合信号电路对神经元和突触进行建模来提高神经形态硬件的能量效率。此外,我们建议将可编程混合信号电路拓扑结构,并探索技术,以共同优化的硬件和软件模型,学习和适应网络参数的失配和变化的存在。此外,该提案还将探索电路拓扑结构,以执行片上学习。基于这些单独的元素,该提案将研究一种系统架构,以开发可重新配置的硬件,该硬件可以编译具有片上学习能力的尖峰神经网络,以执行极端边缘任务。我们计划验证开发的硬件的极端边缘任务是使用公开可用的数据集和具有有限电池容量的四轴飞行器进行对象检测。该提案将解决在设计具有变化和失配的混合信号尖峰神经网络的学习算法、用于以有限资源执行片上学习的电路拓扑和系统架构方面的知识差距,并推进能源领域的最新技术该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估而被认为值得支持和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sahil Shah其他文献

Neuroprotective genes activated in the liver in response to experimental stroke
肝脏中响应实验性中风而激活的神经保护基因
Reliable testing of acidic OER catalysts in GDE half-cell set-up at industrially-relevant current densities
在工业相关电流密度下,对气体扩散电极(GDE)半电池装置中的酸性析氧反应(OER)催化剂进行可靠的测试
  • DOI:
    10.1016/j.electacta.2024.145474
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Timon Elias Günther;Rameshwori Loukrakpam;Bruna Ferreira Gomes;Anouk Soisson;Melissa Moos;Bui Duc Long Nguyen;Sahil Shah;Christina Roth
  • 通讯作者:
    Christina Roth
Low-Power Mixed-Signal System for Processing Electric Network Frequency in IoT Devices
用于处理物联网设备中的电网频率的低功耗混合信号系统
Improving cold chain technologies through the use of phase change material
通过使用相变材料改进冷链技术
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matt Conway;Kelly Daniluk;J. Felder;A. Foo;Amina Goheer;Veena S Katikineni;A. Mazzella;Young Jae Park;George L. Peabody;A. Pereira;Divya Raghavachari;Sahil Shah;Ravi Vaswani
  • 通讯作者:
    Ravi Vaswani
AML Final Report Sight & Sound
AML 最终报告预览
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sahil Shah;Aman Bansal
  • 通讯作者:
    Aman Bansal

Sahil Shah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sahil Shah', 18)}}的其他基金

CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
  • 批准号:
    2338159
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: CMOS+X: 3D integration of CMOS spiking neurons with AlBN/GaN-based Ferroelectric HEMT towards artificial somatosensory system
合作研究:CMOS X:CMOS 尖峰神经元与 AlBN/GaN 基铁电 HEMT 的 3D 集成,用于人工体感系统
  • 批准号:
    2324781
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
Travel: NSF-CISE Student Participation Grant for MWSCAS 2023
旅行: MWSCAS 2023 NSF-CISE 学生参与补助金
  • 批准号:
    2326667
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
Integrated Event-Based SoC: Revolutionizing Sensor and AI Processor Performance with Low-Latency, Energy-Efficient Neuromorphic Computing
基于事件的集成 SoC:通过低延迟、节能的神经拟态计算彻底改变传感器和 AI 处理器的性能
  • 批准号:
    10072308
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Grant for R&D
CRII: RI: Building A Self-Learning Robot System with Neuromorphic Computing
CRII:RI:构建具有神经形态计算的自学习机器人系统
  • 批准号:
    2245712
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
Large-scale photonic-electronic integration for next generation neuromorphic computing systems
用于下一代神经形态计算系统的大规模光子电子集成
  • 批准号:
    2889165
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Studentship
Novel brain-inspired and neuromorphic photonic computing
新颖的受大脑启发的神经形态光子计算
  • 批准号:
    2733978
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Studentship
RII Track-4:NSF: Spin-orbitronics in quantum materials for energy-efficient neuromorphic computing
RII Track-4:NSF:量子材料中的自旋轨道电子学用于节能神经形态计算
  • 批准号:
    2229498
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
CAREER: Entropy Oxide Memristors for Software-equivalent Neuromorphic Computing
职业:用于软件等效神经形态计算的熵氧化物忆阻器
  • 批准号:
    2239951
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Continuing Grant
What Controls Kinetics in Organic Mixed Conductors for Neuromorphic Computing and Beyond?
用于神经形态计算及其他领域的有机混合导体的动力学控制是什么?
  • 批准号:
    2309577
  • 财政年份:
    2023
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Standard Grant
Liquid Brain: Neuromorphic sensing and computing platform for high-throughput screening of antibody developability
Liquid Brain:用于抗体可开发性高通量筛选的神经形态传感和计算平台
  • 批准号:
    10040049
  • 财政年份:
    2022
  • 资助金额:
    $ 33.62万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了