RII Track-4:NSF: Spin-orbitronics in quantum materials for energy-efficient neuromorphic computing

RII Track-4:NSF:量子材料中的自旋轨道电子学用于节能神经形态计算

基本信息

  • 批准号:
    2229498
  • 负责人:
  • 金额:
    $ 26.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

The rapid development of artificial intelligence relies on modern computing technologies. However, the existing von Neumann-based technology suffers from high energy consumption for data-intensive tasks. This high energy consumption may limit the future adoption of artificial intelligence technologies. Inspired by the biological brain, neuromorphic computing provides the promising technological capability to tackle this challenge by creating superior energy-efficient hardware for information processing. This research project exploits the superior nonlinear nonvolatile spin-related responses in quantum materials. The key challenge to implementing neuromorphic computing is to create artificial neurons and synapses with great energy efficiency. Spintronics study the interplay between electron spin transport and charge transport, so they naturally couple electronic and magnetic configurations, thus offering non-volatility and nonlinearity. Nonvolatile spintronics memory devices can emulate artificial synapses and nonlinear spin-torque nano-oscillators can emulate artificial neurons. The proposed research activities will provide a unique opportunity for students at the University of Alabama at Birmingham to gain computation skills and collaborate with distinguished scientists at the National Institute of Standards and Technology (NIST). Additionally, as a part of this project, the PI will develop a new advanced physics course about artificial intelligence and how to implement it with physical devices. This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant Professor and training for a postdoctoral fellow at the University of Alabama at Birmingham (UAB). Brain-inspired neuromorphic computing offers appealing technology capability for artificial intelligence applications. Spintronics devices, which couple electronic and magnetic configurations, can emulate synapses and neurons in an energy-efficient compact manner. The magnetic random-access memory can serve as the synapses and the spin-torque nano-oscillators can serve as the neurons. The quantum materials provide additional appealing features including more efficient control of magnetization and new functionalities due to the coupling of spin, orbital, and magnetization degrees of freedom. Understanding and modeling microscopic mechanisms with state-of-art first-principles methods of neuromorphic spintronics with quantum materials is the main goal of this proposal. The two main thrusts focus on utilizing the superior spin-orbitronics properties in quantum materials for artificial synapses and neurons. By collaborating with the experts at the NIST, the project will apply first-principles methods to calculate the band structures and spin dynamics in spin-orbit coupled quantum materials. This allows for the understanding of the microscopic mechanism of spin-orbit torque switching and dynamics and provides a pathway to improve the figure of merits. Project outcomes will also include illustration of how to utilize these nonlinear nonvolatile properties of spintronics devices into emulating neurons and synapses for neuromorphic computing. The proposed work will provide the physics foundation for implementing neuromorphic spintronics devices with emerging quantum materials such as two-dimensional materials and topological materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能的快速发展依赖于现代计算技术。然而,现有的基于冯诺依曼的技术遭受高能耗的数据密集型任务。这种高能耗可能会限制人工智能技术的未来采用。受生物大脑的启发,神经形态计算通过创建用于信息处理的上级节能硬件来提供有前途的技术能力来应对这一挑战。本研究计划利用量子材料中的上级非线性非挥发自旋相关响应。实现神经形态计算的关键挑战是创建具有高能效的人工神经元和突触。自旋电子学研究电子自旋输运和电荷输运之间的相互作用,因此它们自然地耦合电子和磁性配置,从而提供非挥发性和非线性。非易失性自旋电子学存储器设备可以模拟人工突触,并且非线性自旋扭矩纳米振荡器可以模拟人工神经元。拟议的研究活动将为伯明翰亚拉巴马大学的学生提供一个独特的机会,以获得计算技能,并与美国国家标准与技术研究所(NIST)的杰出科学家合作。此外,作为该项目的一部分,PI将开发一个新的关于人工智能的高级物理课程,以及如何用物理设备实现它。这个研究基础设施改善轨道-4 EPSCoR研究员(RII轨道-4)项目将提供奖学金的助理教授和培训的博士后研究员在伯明翰(UAB)的亚拉巴马大学。脑启发的神经形态计算为人工智能应用提供了吸引人的技术能力。自旋电子学设备,耦合电子和磁配置,可以模拟突触和神经元在一个节能紧凑的方式。磁随机存取存储器可以充当突触,自旋扭矩纳米振荡器可以充当神经元。量子材料提供了额外的吸引人的功能,包括更有效地控制磁化和新的功能,由于自旋,轨道和磁化自由度的耦合。理解和建模的微观机制与国家的最先进的第一性原理方法的神经形态自旋电子学与量子材料是这个建议的主要目标。这两个主要的推动力集中在利用量子材料中的上级自旋-轨道电子学特性来制造人工突触和神经元。通过与NIST的专家合作,该项目将应用第一性原理方法来计算自旋轨道耦合量子材料的能带结构和自旋动力学。这使得理解的微观机制的自旋-轨道转矩开关和动力学,并提供了一种途径,以提高的数字的优点。项目成果还将包括如何利用自旋电子器件的这些非线性非易失性特性来模拟神经元和突触进行神经形态计算的说明。这项工作将为使用新兴量子材料(如二维材料和拓扑材料)实现神经形态自旋电子学器件提供物理基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Angular dependence of spin-orbit torque in monolayer Fe3GeTe2
  • DOI:
    10.1103/physrevb.108.144422
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    F. Xue;M. Stiles;P. Haney
  • 通讯作者:
    F. Xue;M. Stiles;P. Haney
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei Xue其他文献

Effect of Irradiation on Austenite Phase in Thermally Aged 308 Stainless Steel Weld Metal
辐照对热时效308不锈钢焊缝金属奥氏体相的影响
Real-time Temperature Monitoring System Design Based on MATLAB GUI
基于MATLAB GUI的实时温度监测系统设计
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fei Xue;Youliang Yang;Futao Dong
  • 通讯作者:
    Futao Dong
Rapid milk intake of captive giant panda cubs during the early growth stages
圈养大熊猫幼崽生长早期快速吸奶
  • DOI:
    10.25225/fozo.v67.i3-4.a7.2018
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangming Huang;Mingxi Li;Fei Xue;Chengdong Wang;Zhihe Zhang;Kongju Wu;Kuixing Yang;Dunwu Qi
  • 通讯作者:
    Dunwu Qi
Structural and physical properties of Ti-doped BiFeO3 nanoceramics
Ti掺杂BiFeO3纳米陶瓷的结构和物理性能
  • DOI:
    10.1016/j.ceramint.2017.12.013
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Yahui Tian;Fei Xue;Qiuyun Fu;Ling Zhou;Chaohong Wang;Haibo Gou;Mingzhi Zhang
  • 通讯作者:
    Mingzhi Zhang
Effect of Annealing Temperature on the Stress and Structural Properties of Germanium Core Fibre
退火温度对锗芯光纤应力和结构性能的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Ziwen Zhao;Xueli Cheng;Fei Xue;Ting He;Tingyun Wang
  • 通讯作者:
    Tingyun Wang

Fei Xue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei Xue', 18)}}的其他基金

Integrative approaches with applications in eQTL analysis and randomized trials
综合方法在 eQTL 分析和随机试验中的应用
  • 批准号:
    2210860
  • 财政年份:
    2022
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Continuing Grant
Computational Methods for Large Algebraic Eigenproblems with Special Structures
具有特殊结构的大型代数本征问题的计算方法
  • 批准号:
    2111496
  • 财政年份:
    2021
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
New Preconditioned Solvers for Large and Complex Eigenvalue Problems
用于大型复杂特征值问题的新预处理求解器
  • 批准号:
    1819097
  • 财政年份:
    2018
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
Supporting and Sustaining Scholarly Mathematics Teaching
支持和维持学术数学教学
  • 批准号:
    1725952
  • 财政年份:
    2017
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
Fast algorithms for large-scale nonlinear algebraic eigenproblems
大规模非线性代数本征问题的快速算法
  • 批准号:
    1719461
  • 财政年份:
    2016
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
Fast algorithms for large-scale nonlinear algebraic eigenproblems
大规模非线性代数本征问题的快速算法
  • 批准号:
    1419100
  • 财政年份:
    2014
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 26.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了