CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas

CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用

基本信息

  • 批准号:
    2210840
  • 负责人:
  • 金额:
    $ 36.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This Critical Aspects of Sustainability - Climate (CAS-Climate) project develops an accurate and fast statistical representation (also known as emulation) of large-scale flooding events as an alternate to running complex physical models in every instance. This is achieved by training the statistical formulation on representative flood simulations but adding flexibility to infer results for situations that are not in the training set. Large floods are expected to occur more frequently due to climate change and so motivate increased attention for robust, efficient, and real-time flood modeling. For most river engineering problems, including flood mitigation, there is a need for quantification of water depth and surface elevation under different scenarios of rainfall and storm surges. While many hydraulic models (e.g., the TELEMAC model) can represent these features, large-scale hydraulic simulations of flooding using high-resolution topographic and infrastructure data, are computationally expensive to complete. Thus, despite these modeling resources, simulating possible flood scenarios routinely or in a rapid manner is limited. A novel aspect of this work is to focus on statistical distributions for extreme events, which are appropriate for flooding, rather than average quantities that are less useful for assessing risks and hazards. Also, the statistical basis of this approach lends itself to measures of uncertainty in the predictions and so support decision making and other practical uses.There is little existing methodology to emulate computer models built on spatial extreme distributions to represent flooding in a complex domain and an important feature of this work is matching the flooding response with the appropriate statistical processes. This is in contrast with a machine learning, purely data-driven approach where extreme events may not be as well represented. The modeling framework is transformative including: a Markov random field formulation using generalized extreme value distributions for site-specific conditional distributions, selecting neighborhood size using a penalized likelihood method for spatial extremes, a theoretical investigation into the validity and large sample properties of emulators, and developing computational algorithms to handle very large data volumes. This work will be validated through proof-of-concept studies with TELEMAC model simulations, forced by realistic patterns of extreme rainfall events and storm surges and located in an urban area of the US. Open-source tools will be generated based on the results from this project and shared with the engineering communities, especially civil infrastructure community that frequently faces challenges in coping with spatially-dependent data and uncertainties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可持续性 - 气候(CAS气候)项目的这一关键方面开发了大规模洪水事件的准确,快速的统计表示(也称为仿真),作为每种情况下运行复杂物理模型的替代方法。这是通过训练代表性洪水模拟的统计公式来实现的,但增加了灵活性,以推断不在训练集中的情况下的结果。由于气候变化,预计大洪水会更频繁地发生,因此激励人们增加对稳健,高效和实时洪水建模的关注。对于大多数河流工程问题,包括减轻洪水,需要在不同的降雨和暴风雨中量化水深和表面高度。尽管许多液压模型(例如,Telemac模型)可以代表这些功能,但使用高分辨率地形图和基础设施数据对洪水进行大规模的液压模拟在计算上的昂贵。因此,尽管有这些建模资源,但通常会迅速模拟可能的洪水场景是有限的。 这项工作的一个新方面是专注于极端事件的统计分布,这些分布适合洪水,而不是平均数量,这些数量对于评估风险和危害而言不太有用。 同样,这种方法的统计基础为预测中的不确定性衡量,因此支持决策和其他实际用途。几乎没有现有的方法模仿基于空间极端分布的计算机模型以表示复杂领域中的洪水,而这项工作的重要特征是将洪水响应与适当的统计过程相匹配。这与机器学习,纯粹是数据驱动的方法形成鲜明对比,在该方法中,极端事件可能没有很好地代表。该建模框架具有变革性,包括:马尔可夫随机场公式,使用广义的极值分布进行特定地点的条件分布,使用惩罚的可能性方法来选择邻里大小,用于空间极端,对模拟器的有效性和大型样本属性进行了理论研究,并开发了计算算法来处理非常大的数据弱点。这项工作将通过Telemac模型模拟的概念验证研究来验证,这是由极端降雨事件和风暴潮的现实模式强迫,并位于美国市区。开源工具将根据该项目的结果生成,并与工程社区共享,尤其是民事基础设施社区,这些社区经常在应对空间依赖数据和不确定性时面临挑战。该奖项反映了NSF的法定任务,并通过基金会的知识分子优点和广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soutir Bandyopadhyay其他文献

A note on efficient density estimators of convolutions
  • DOI:
    10.1016/j.jspi.2012.04.012
  • 发表时间:
    2012-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Soutir Bandyopadhyay
  • 通讯作者:
    Soutir Bandyopadhyay
Statistical analysis of experimental studies of non-Darcy flow in proppant packs
  • DOI:
    10.1016/j.petrol.2022.110727
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kamga L. Ngameni;Soutir Bandyopadhyay;Jennifer L. Miskimins
  • 通讯作者:
    Jennifer L. Miskimins

Soutir Bandyopadhyay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soutir Bandyopadhyay', 18)}}的其他基金

Workshop: Collaborative Strategies for Predicting and Measuring Uncertainty in Rare Occurrences in Civil and Environmental Systems; Golden, Colorado; 6-8 November 2024
研讨会:预测和测量民用和环境系统中罕见事件的不确定性的协作策略;
  • 批准号:
    2400107
  • 财政年份:
    2024
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Highly Multivariate Spatial Processes with Applications to Climate Data Science
合作研究:高度多元空间过程的理论和方法及其在气候数据科学中的应用
  • 批准号:
    1811384
  • 财政年份:
    2018
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
  • 批准号:
    1854181
  • 财政年份:
    2018
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
  • 批准号:
    1406622
  • 财政年份:
    2014
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant

相似国自然基金

中亚热带混交林潜在收获机理及立地气候响应机制研究
  • 批准号:
    32301585
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
阿尔泰山友谊峰南坡地区第四纪冰川演化序列与古气候重建
  • 批准号:
    42371011
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
气候模式中海表温度日变化振幅对ENSO模拟的影响研究
  • 批准号:
    42376033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
气候变化与地下水枯竭双重约束下我国作物种植结构逐层优化研究
  • 批准号:
    42307589
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
长江中下游典型农作物碳氮比对极端天气气候事件的响应解析
  • 批准号:
    42371046
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
  • 批准号:
    2241892
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308679
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243100
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了