CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas

CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用

基本信息

  • 批准号:
    2210840
  • 负责人:
  • 金额:
    $ 36.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This Critical Aspects of Sustainability - Climate (CAS-Climate) project develops an accurate and fast statistical representation (also known as emulation) of large-scale flooding events as an alternate to running complex physical models in every instance. This is achieved by training the statistical formulation on representative flood simulations but adding flexibility to infer results for situations that are not in the training set. Large floods are expected to occur more frequently due to climate change and so motivate increased attention for robust, efficient, and real-time flood modeling. For most river engineering problems, including flood mitigation, there is a need for quantification of water depth and surface elevation under different scenarios of rainfall and storm surges. While many hydraulic models (e.g., the TELEMAC model) can represent these features, large-scale hydraulic simulations of flooding using high-resolution topographic and infrastructure data, are computationally expensive to complete. Thus, despite these modeling resources, simulating possible flood scenarios routinely or in a rapid manner is limited. A novel aspect of this work is to focus on statistical distributions for extreme events, which are appropriate for flooding, rather than average quantities that are less useful for assessing risks and hazards. Also, the statistical basis of this approach lends itself to measures of uncertainty in the predictions and so support decision making and other practical uses.There is little existing methodology to emulate computer models built on spatial extreme distributions to represent flooding in a complex domain and an important feature of this work is matching the flooding response with the appropriate statistical processes. This is in contrast with a machine learning, purely data-driven approach where extreme events may not be as well represented. The modeling framework is transformative including: a Markov random field formulation using generalized extreme value distributions for site-specific conditional distributions, selecting neighborhood size using a penalized likelihood method for spatial extremes, a theoretical investigation into the validity and large sample properties of emulators, and developing computational algorithms to handle very large data volumes. This work will be validated through proof-of-concept studies with TELEMAC model simulations, forced by realistic patterns of extreme rainfall events and storm surges and located in an urban area of the US. Open-source tools will be generated based on the results from this project and shared with the engineering communities, especially civil infrastructure community that frequently faces challenges in coping with spatially-dependent data and uncertainties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个可持续发展的关键方面-气候(CAS-气候)项目开发了大规模洪水事件的准确和快速的统计表示(也称为仿真),作为在每种情况下运行复杂物理模型的替代方案。这是通过在代表性洪水模拟上训练统计公式来实现的,但增加了灵活性,以推断不在训练集中的情况的结果。由于气候变化,预计大洪水将更频繁地发生,因此激发了对强大,高效和实时洪水建模的更多关注。对于大多数河流工程问题,包括洪水缓解,需要在不同的降雨和风暴潮情况下量化水深和水面高程。虽然许多水力模型(例如,TELEMAC模型)可以表示这些特征,但是使用高分辨率地形和基础设施数据的洪水的大规模水力模拟完成在计算上是昂贵的。因此,尽管有这些建模资源,但常规或快速地模拟可能的洪水情景是有限的。 这项工作的一个新的方面是专注于极端事件的统计分布,这是适当的洪水,而不是平均数量是不太有用的评估风险和危害。 此外,这种方法的统计基础本身的预测的不确定性的措施,因此支持决策和其他实际use.There是现有的方法来模拟计算机模型建立在空间极端分布,以表示洪水在一个复杂的域和这项工作的一个重要特点是匹配的洪水响应与适当的统计过程。这与机器学习相反,纯粹的数据驱动方法可能无法很好地表示极端事件。建模框架是变革性的,包括:马尔可夫随机场制定使用广义极值分布的特定站点的条件分布,选择邻域大小使用惩罚似然方法的空间极端,理论研究的有效性和大样本特性的仿真器,并开发计算算法来处理非常大的数据量。这项工作将通过TELEMAC模型模拟的概念验证研究进行验证,该研究受到极端降雨事件和风暴潮的现实模式的影响,并位于美国的一个城市地区。开源工具将基于该项目的结果生成,并与工程界共享,特别是在应对空间依赖数据和不确定性方面经常面临挑战的民用基础设施界。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soutir Bandyopadhyay其他文献

A note on efficient density estimators of convolutions
  • DOI:
    10.1016/j.jspi.2012.04.012
  • 发表时间:
    2012-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Soutir Bandyopadhyay
  • 通讯作者:
    Soutir Bandyopadhyay
Adapting quantile mapping to bias correct solar radiation data
调整分位数映射以对太阳辐射数据进行偏差校正
  • DOI:
    10.1016/j.solener.2024.113220
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Maggie D. Bailey;Douglas W. Nychka;Manajit Sengupta;Jaemo Yang;Yu Xie;Aron Habte;Soutir Bandyopadhyay
  • 通讯作者:
    Soutir Bandyopadhyay
Statistical analysis of experimental studies of non-Darcy flow in proppant packs
  • DOI:
    10.1016/j.petrol.2022.110727
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kamga L. Ngameni;Soutir Bandyopadhyay;Jennifer L. Miskimins
  • 通讯作者:
    Jennifer L. Miskimins
A statistical framework for district energy long-term electric load forecasting
区域能源长期电力负荷预测的统计框架
  • DOI:
    10.1016/j.apenergy.2025.125445
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Emily Royal;Soutir Bandyopadhyay;Alexandra Newman;Qiuhua Huang;Paulo Cesar Tabares-Velasco
  • 通讯作者:
    Paulo Cesar Tabares-Velasco

Soutir Bandyopadhyay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soutir Bandyopadhyay', 18)}}的其他基金

Workshop: Collaborative Strategies for Predicting and Measuring Uncertainty in Rare Occurrences in Civil and Environmental Systems; Golden, Colorado; 6-8 November 2024
研讨会:预测和测量民用和环境系统中罕见事件的不确定性的协作策略;
  • 批准号:
    2400107
  • 财政年份:
    2024
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Highly Multivariate Spatial Processes with Applications to Climate Data Science
合作研究:高度多元空间过程的理论和方法及其在气候数据科学中的应用
  • 批准号:
    1811384
  • 财政年份:
    2018
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
  • 批准号:
    1854181
  • 财政年份:
    2018
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
  • 批准号:
    1406622
  • 财政年份:
    2014
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
  • 批准号:
    2241892
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308679
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243100
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
  • 批准号:
    2241893
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Structure, Dynamics, and Reaction Mechanism of Supported Single Atom for Photocatalytic CO2 Reduction
合作研究:CAS-气候:光催化CO2还原的负载单原子的结构、动力学和反应机制
  • 批准号:
    2321203
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
  • 批准号:
    2210811
  • 财政年份:
    2022
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS - Climate: Improving Nonstationary Intensity-Duration-Frequency Analysis of Extreme Precipitation by Advancing Knowledge on the Generating Mechanisms
合作研究:CAS - 气候:通过增进对生成机制的认识来改进极端降水的非平稳强度-持续时间-频率分析
  • 批准号:
    2221803
  • 财政年份:
    2022
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Nonstationarity of Compound Coastal Floods in the Anthropocene
合作研究:CAS-气候:人类世复合沿海洪水的非平稳性
  • 批准号:
    2223894
  • 财政年份:
    2022
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了