CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas

CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用

基本信息

  • 批准号:
    2210840
  • 负责人:
  • 金额:
    $ 36.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This Critical Aspects of Sustainability - Climate (CAS-Climate) project develops an accurate and fast statistical representation (also known as emulation) of large-scale flooding events as an alternate to running complex physical models in every instance. This is achieved by training the statistical formulation on representative flood simulations but adding flexibility to infer results for situations that are not in the training set. Large floods are expected to occur more frequently due to climate change and so motivate increased attention for robust, efficient, and real-time flood modeling. For most river engineering problems, including flood mitigation, there is a need for quantification of water depth and surface elevation under different scenarios of rainfall and storm surges. While many hydraulic models (e.g., the TELEMAC model) can represent these features, large-scale hydraulic simulations of flooding using high-resolution topographic and infrastructure data, are computationally expensive to complete. Thus, despite these modeling resources, simulating possible flood scenarios routinely or in a rapid manner is limited. A novel aspect of this work is to focus on statistical distributions for extreme events, which are appropriate for flooding, rather than average quantities that are less useful for assessing risks and hazards. Also, the statistical basis of this approach lends itself to measures of uncertainty in the predictions and so support decision making and other practical uses.There is little existing methodology to emulate computer models built on spatial extreme distributions to represent flooding in a complex domain and an important feature of this work is matching the flooding response with the appropriate statistical processes. This is in contrast with a machine learning, purely data-driven approach where extreme events may not be as well represented. The modeling framework is transformative including: a Markov random field formulation using generalized extreme value distributions for site-specific conditional distributions, selecting neighborhood size using a penalized likelihood method for spatial extremes, a theoretical investigation into the validity and large sample properties of emulators, and developing computational algorithms to handle very large data volumes. This work will be validated through proof-of-concept studies with TELEMAC model simulations, forced by realistic patterns of extreme rainfall events and storm surges and located in an urban area of the US. Open-source tools will be generated based on the results from this project and shared with the engineering communities, especially civil infrastructure community that frequently faces challenges in coping with spatially-dependent data and uncertainties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可持续发展的关键方面-气候(CAS-Climate)项目开发了大规模洪水事件的准确和快速的统计表示(也称为模拟),作为在每个实例中运行复杂物理模型的替代方案。这是通过训练代表性洪水模拟的统计公式来实现的,但增加了灵活性,可以推断不在训练集中的情况的结果。由于气候变化,大洪水预计会更频繁地发生,因此人们越来越关注强大、高效和实时的洪水建模。对于大多数河流工程问题,包括防洪,都需要量化不同降雨和风暴潮情景下的水深和地表高程。虽然许多水力模型(例如TELEMAC模型)可以表示这些特征,但使用高分辨率地形和基础设施数据进行大规模水力模拟的计算成本很高。因此,尽管有这些建模资源,常规或快速模拟可能的洪水情景是有限的。这项工作的一个新颖方面是关注极端事件的统计分布,这适用于洪水,而不是对评估风险和危害不太有用的平均数量。此外,这种方法的统计基础有助于衡量预测中的不确定性,从而支持决策制定和其他实际用途。现有的方法很少模拟建立在空间极端分布上的计算机模型来表示复杂域的洪水,这项工作的一个重要特征是将洪水响应与适当的统计过程相匹配。这与机器学习、纯数据驱动的方法形成对比,在这种方法中,极端事件可能无法很好地表示。建模框架具有变革性,包括:使用特定地点条件分布的广义极值分布的马尔可夫随机场公式,使用空间极值的惩罚似然方法选择邻域大小,对模拟器的有效性和大样本特性的理论研究,以及开发处理非常大数据量的计算算法。这项工作将通过TELEMAC模型模拟的概念验证研究来验证,该模型将在美国城市地区的极端降雨事件和风暴潮的现实模式下进行。开源工具将基于该项目的结果生成,并与工程界共享,特别是在处理空间依赖数据和不确定性方面经常面临挑战的民用基础设施界。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soutir Bandyopadhyay其他文献

A note on efficient density estimators of convolutions
  • DOI:
    10.1016/j.jspi.2012.04.012
  • 发表时间:
    2012-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Soutir Bandyopadhyay
  • 通讯作者:
    Soutir Bandyopadhyay
Adapting quantile mapping to bias correct solar radiation data
调整分位数映射以对太阳辐射数据进行偏差校正
  • DOI:
    10.1016/j.solener.2024.113220
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Maggie D. Bailey;Douglas W. Nychka;Manajit Sengupta;Jaemo Yang;Yu Xie;Aron Habte;Soutir Bandyopadhyay
  • 通讯作者:
    Soutir Bandyopadhyay
Statistical analysis of experimental studies of non-Darcy flow in proppant packs
  • DOI:
    10.1016/j.petrol.2022.110727
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kamga L. Ngameni;Soutir Bandyopadhyay;Jennifer L. Miskimins
  • 通讯作者:
    Jennifer L. Miskimins
A statistical framework for district energy long-term electric load forecasting
区域能源长期电力负荷预测的统计框架
  • DOI:
    10.1016/j.apenergy.2025.125445
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Emily Royal;Soutir Bandyopadhyay;Alexandra Newman;Qiuhua Huang;Paulo Cesar Tabares-Velasco
  • 通讯作者:
    Paulo Cesar Tabares-Velasco

Soutir Bandyopadhyay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soutir Bandyopadhyay', 18)}}的其他基金

Workshop: Collaborative Strategies for Predicting and Measuring Uncertainty in Rare Occurrences in Civil and Environmental Systems; Golden, Colorado; 6-8 November 2024
研讨会:预测和测量民用和环境系统中罕见事件的不确定性的协作策略;
  • 批准号:
    2400107
  • 财政年份:
    2024
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Highly Multivariate Spatial Processes with Applications to Climate Data Science
合作研究:高度多元空间过程的理论和方法及其在气候数据科学中的应用
  • 批准号:
    1811384
  • 财政年份:
    2018
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
  • 批准号:
    1854181
  • 财政年份:
    2018
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
  • 批准号:
    1406622
  • 财政年份:
    2014
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
  • 批准号:
    2241892
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308679
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243100
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
  • 批准号:
    2241893
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Structure, Dynamics, and Reaction Mechanism of Supported Single Atom for Photocatalytic CO2 Reduction
合作研究:CAS-气候:光催化CO2还原的负载单原子的结构、动力学和反应机制
  • 批准号:
    2321203
  • 财政年份:
    2023
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
  • 批准号:
    2210811
  • 财政年份:
    2022
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS - Climate: Improving Nonstationary Intensity-Duration-Frequency Analysis of Extreme Precipitation by Advancing Knowledge on the Generating Mechanisms
合作研究:CAS - 气候:通过增进对生成机制的认识来改进极端降水的非平稳强度-持续时间-频率分析
  • 批准号:
    2221803
  • 财政年份:
    2022
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Nonstationarity of Compound Coastal Floods in the Anthropocene
合作研究:CAS-气候:人类世复合沿海洪水的非平稳性
  • 批准号:
    2223894
  • 财政年份:
    2022
  • 资助金额:
    $ 36.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了