NSF-BSF: SHF: Small: Neural Network Verification: Abstraction, Compositional Verification and Standardization
NSF-BSF:SHF:小型:神经网络验证:抽象、组合验证和标准化
基本信息
- 批准号:2211505
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Manually crafting complex software is a difficult and error-prone task. To mitigate this difficulty, engineers have begun using machine learning techniques to automatically train deep neural networks, which are software artifacts capable of performing a variety of tasks. Neural networks have been shown to excel at image recognition, speech recognition, game playing, and many other tasks, and recently there is even a trend of incorporating them in safety-critical systems, e.g., as controllers in autonomous vehicles. This raises concerns, as determining the correctness and reliability of deep neural networks is challenging. Neural networks are opaque, in the sense that they lack a logical structure that humans can comprehend. Consequently, industry best-practices such as code-reviews and refactoring are inapplicable, and it is highly difficult for engineers to reason about the behavior of neural networks and guarantee their correctness. A new set of techniques for automatically reasoning about neural networks has been proposed, and early results are promising but are limited in usability and scalability. In this project, we aim to address these obstacles and thereby make automatic verification of neural networks more widely applicable.The project brings together experts in neural network verification from Stanford University and from the Hebrew University of Jerusalem in order to pursue the following research goals: (i) develop improved and more scalable neural network verification techniques, using abstraction-refinement and residual reasoning; (ii) further improve scalability by devising hand-crafted and data-driven schemes for the compositional verification of neural networks; and (iii) begin to standardize the field of neural network verification, in order to make the technology and tools accessible to non-experts. These goals will lead to significant advances in the quality and scalability of verification techniques for neural networks and will enable the use of neural networks in many applications that are currently beyond their reach. The project has the potential for substantial impact on education and research across multiple research communities (e.g., verification, machine-learning, artificial intelligence). Also, there will be broader benefits to society as a whole, by allowing the deployment of neural networks in various real-world systems in a safe and reliable way.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
手工制作复杂的软件是一项困难且容易出错的任务。为了减轻这一困难,工程师们已经开始使用机器学习技术来自动训练深度神经网络,这些神经网络是能够执行各种任务的软件工件。神经网络已被证明在图像识别、语音识别、玩游戏和许多其他任务方面表现出色,最近甚至有将它们纳入安全关键系统的趋势,例如,as controllers控制器in autonomous自动vehicles车辆. 这引起了人们的担忧,因为确定深度神经网络的正确性和可靠性具有挑战性。神经网络是不透明的,因为它们缺乏人类可以理解的逻辑结构。因此,代码审查和重构等行业最佳实践不适用,工程师很难推理神经网络的行为并保证其正确性。 已经提出了一套新的自动推理神经网络的技术,早期的结果是有希望的,但在可用性和可扩展性有限。 在这个项目中,我们的目标是解决这些障碍,从而使神经网络的自动验证更广泛地应用。该项目汇集了来自斯坦福大学和耶路撒冷的神经网络验证专家,以追求以下研究目标:(i)开发改进的和更可扩展的神经网络验证技术,使用抽象-细化和剩余推理;(ii)通过为神经网络的组成验证设计手工制作和数据驱动的方案,进一步提高可扩展性;(iii)开始标准化神经网络验证领域,以便使非专家也能使用技术和工具。这些目标将导致神经网络验证技术的质量和可扩展性的显著进步,并将使神经网络能够在目前无法实现的许多应用中使用。 该项目有可能对多个研究社区的教育和研究产生重大影响(例如,验证、机器学习、人工智能)。此外,通过安全可靠地将神经网络部署到各种现实系统中,将为整个社会带来更广泛的利益。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tighter Abstract Queries in Neural Network Verification
- DOI:10.48550/arxiv.2210.12871
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Elazar Cohen;Y. Elboher;Clark W. Barrett;Guy Katz
- 通讯作者:Elazar Cohen;Y. Elboher;Clark W. Barrett;Guy Katz
Convex Bounds on the Softmax Function with Applications to Robustness Verification
- DOI:10.48550/arxiv.2303.01713
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Dennis L. Wei;Haoze Wu;Min Wu;Pin-Yu Chen;Clark W. Barrett;E. Farchi
- 通讯作者:Dennis L. Wei;Haoze Wu;Min Wu;Pin-Yu Chen;Clark W. Barrett;E. Farchi
DNN Verification, Reachability, and the Exponential Function Problem
- DOI:10.48550/arxiv.2305.06064
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Omri Isac;Yoni Zohar;Clark W. Barrett;Guy Katz
- 通讯作者:Omri Isac;Yoni Zohar;Clark W. Barrett;Guy Katz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clark Barrett其他文献
The nonexistence of unicorns and many-sorted L\"owenheim-Skolem theorems
独角兽的不存在和多种 L"owenheim-Skolem 定理
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Benjamin Przybocki;G. Toledo;Yoni Zohar;Clark Barrett - 通讯作者:
Clark Barrett
Being careful about theory combination
- DOI:
10.1007/s10703-012-0159-z - 发表时间:
2012-06-09 - 期刊:
- 影响因子:0.800
- 作者:
Dejan Jovanović;Clark Barrett - 通讯作者:
Clark Barrett
Efficiently Synthesizing Lowest Cost Rewrite Rules for Instruction Selection
有效综合用于指令选择的最低成本重写规则
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ross G. Daly;Caleb Donovick;Caleb Terrill;J. Melchert;Priyanka Raina;Clark Barrett;Pat Hanrahan - 通讯作者:
Pat Hanrahan
Selected Extended Papers of NFM 2017: Preface
- DOI:
10.1007/s10817-018-9488-y - 发表时间:
2018-10-20 - 期刊:
- 影响因子:0.800
- 作者:
Clark Barrett;Temesghen Kahsai - 通讯作者:
Temesghen Kahsai
Clark Barrett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clark Barrett', 18)}}的其他基金
POSE: Phase II: An Open-Source Ecosystem for the cvc5 SMT Solver
POSE:第二阶段:cvc5 SMT 求解器的开源生态系统
- 批准号:
2303489 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: SHF: Small: Efficient, Automatic, and Trustworthy Smart Contract Verification
NSF-BSF:SHF:小型:高效、自动且值得信赖的智能合约验证
- 批准号:
2110397 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Integrating Synthesis and Optimization in Satisfiability Modulo Theories
合作研究:SHF:小型:在可满足性模理论中集成综合和优化
- 批准号:
2006407 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2019 Formal Methods in Computer-Aided Design (FMCAD)
NSF 2019 年计算机辅助设计形式方法 (FMCAD) 学生旅费补助金
- 批准号:
1935921 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: SHF: Small: Certifiable Verification of Large Neural Networks
NSF-BSF:SHF:小型:大型神经网络的可认证验证
- 批准号:
1814369 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Breaking the Satisfiability Modulo Theories (SMT) Bottleneck in Symbolic Security Analysis
TWC:媒介:协作:打破符号安全分析中的可满足性模理论 (SMT) 瓶颈
- 批准号:
1228768 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
TC: EAGER: Collaborative Research: Parallel Automated Reasoning
TC:EAGER:协作研究:并行自动推理
- 批准号:
1049495 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small:Collaborative Research: Flexible, Efficient, and Trustworthy Proof Checking for Satisfiability Modulo Theories
SHF:小型:协作研究:灵活、高效且值得信赖的可满足性模理论证明检查
- 批准号:
0914956 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
- 批准号:
2400200 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant