Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
基本信息
- 批准号:2208770
- 负责人:
- 金额:$ 61.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project investigates a framework that can significantly improve the energy-efficiency of training artificial intelligence (AI) systems using circuits and system architectures that are based on quantum-tunneling dynamic-analog-memory (DAM) devices. In 2019, the energy required to train a top-of-the-line AI system was more than the energy required to operate five US cars over their entire lifetime. The energy requirements for training large-scale AI systems have only gotten worse since to the point of being unsustainable. The proposed research aims to develop novel learning hardware that will make the training of ML and AI systems more energy sustainable. The project is also developing software tools for training AI systems that can be disseminated and adopted by the research community. The novel online learning and memory consolidation algorithms that are being developed in this project will be integrated with an openly shared, general-purpose neuromorphic cognitive computing platform available through the Neuroscience Gateway (NSG) Portal at the San Diego Supercomputer Center. In collaboration with Efabless Inc. the project is supporting open-source development of mixed-signal integrated circuits (IC) design tools that is being evaluated through in class-room instruction and projects.The technical activities of this research project are based on an ultra-energy-efficient synaptic element called Fowler-Nordheim Dynamic Analog Memory (FN-DAM) that can be easily fabricated on a standard integrated circuits process. The memory retention property of the synaptic element has been previously shown to be adaptive and can be traded-off with the energy required for synaptic updates. These FN-DAM properties are being explored within the context of the following research objectives: 1) Investigation into novel FN-DAM based neural network training and learning algorithms and architecture: Mechanisms are being explored that can connect the dynamics of FN-DAM array with the training formulations of standard convolutional neural network. Efficient one-shot continual online learning techniques are being investigated that exploit the dynamics of FN-DAM to improve the speed and robustness of learning. The framework is being used to explore connections between the FN-DAM based architectures with neuromorphic memory architectures that combines episodic-memories with incremental learning paradigms; 2) Investigation into novel FN-DAM based compute-in-memory and on-chip learning architectures: Analog compute-in-memory learning architectures are being investigated that integrate FN-DAM arrays with CMOS computing circuits and on-chip adaptation and learning strategies; 3) Validation of the FN-DAM based hardware-software co-design framework: The project is validating the co-design framework for achieving high energy-efficiency in neural network training using the NSF CISE Community Research Infrastructure (CRI) for large-scale neuromorphic cognitive computing developed and maintained at University of California at San Diego (UCSD). The project is also validating the energy-efficiency improvements that can be achieved using prototypes that will be fabricated in a standard integrated circuits process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目调查了一个框架,该框架可以显着提高使用基于量子隧道动态模拟存储器(DAM)设备的电路和系统架构训练人工智能(AI)系统的能源效率。2019年,训练一个顶级人工智能系统所需的能量超过了五辆美国汽车在其整个生命周期内运行所需的能量。训练大规模人工智能系统的能源需求只会变得更糟,到了不可持续的地步。拟议的研究旨在开发新型学习硬件,使ML和AI系统的训练更具能源可持续性。该项目还在开发用于培训人工智能系统的软件工具,这些工具可以被研究界传播和采用。该项目正在开发的新型在线学习和记忆巩固算法将与圣地亚哥超级计算机中心的神经科学门户(NSG)门户网站提供的开放共享的通用神经形态认知计算平台集成。与Efabless Inc.合作该项目支持混合信号集成电路(IC)设计工具的开源开发,该工具正在通过课堂教学和项目进行评估。该研究项目的技术活动基于一种名为Fowler-Nordheim动态模拟存储器(FN-DAM)的超节能突触元件,该元件可以在标准集成电路工艺上轻松制造。突触元件的记忆保持特性先前已被证明是自适应的,并且可以与突触更新所需的能量进行权衡。这些FN-DAM属性正在以下研究目标的背景下进行探索:1)研究基于FN-DAM的新型神经网络训练和学习算法和架构:正在探索可以将FN-DAM阵列的动态与标准卷积神经网络的训练公式联系起来的机制。高效的一次连续在线学习技术正在研究,利用FN-DAM的动态,以提高学习的速度和鲁棒性。该框架被用于探索基于FN-DAM的体系结构与神经形态存储器体系结构之间的联系,该神经形态存储器体系结构将情景存储器与增量学习范例相结合; 2)研究基于FN-DAM的新型计算在存储器和片上学习体系结构:正在研究模拟计算在存储器学习体系结构,该体系结构将FN-DAM阵列与CMOS计算电路和片上自适应和学习策略相集成; 3)基于FN-DAM的软硬件协同设计框架的验证:该项目正在验证协同设计框架,以使用由加州大学圣地亚哥分校(UCSD)开发和维护的用于大规模神经形态认知计算的NSF CISE社区研究基础设施(CRI)实现神经网络训练的高能效。该项目还验证了使用标准集成电路工艺制造的原型可以实现的能源效率改进。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance Walls in Machine Learning and Neuromorphic Systems
机器学习和神经形态系统中的性能墙
- DOI:10.1109/iscas46773.2023.10181597
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chakrabartty, Shantanu;Cauwenberghs, Gert
- 通讯作者:Cauwenberghs, Gert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shantanu Chakrabartty其他文献
A compact and energy-efficient ultrasound receiver using PTAT reference circuit
- DOI:
10.1016/j.mejo.2019.104656 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:
- 作者:
Yarub Alazzawi;Oindrila Chatterjee;Shantanu Chakrabartty - 通讯作者:
Shantanu Chakrabartty
Towards packet-less ultrasonic sensor networks for energy-harvesting structures
- DOI:
10.1016/j.comcom.2016.11.001 - 发表时间:
2017-03-15 - 期刊:
- 影响因子:
- 作者:
Saptarshi Das;Hadi Salehi;Yan Shi;Shantanu Chakrabartty;Rigoberto Burgueno;Subir Biswas - 通讯作者:
Subir Biswas
Co-detection: Ultra-reliable nanoparticle-based electrical detection of biomolecules in the presence of large background interference
- DOI:
10.1016/j.bios.2010.08.067 - 发表时间:
2010-11-15 - 期刊:
- 影响因子:
- 作者:
Yang Liu;Ming Gu;Evangelyn C. Alocilja;Shantanu Chakrabartty - 通讯作者:
Shantanu Chakrabartty
Shantanu Chakrabartty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shantanu Chakrabartty', 18)}}的其他基金
RCN-SC: Research Coordination Network for Design and Testing of Neuromorphic Integrated Circuits
RCN-SC:神经形态集成电路设计和测试的研究协调网络
- 批准号:
2332166 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Continuing Grant
EAGER: Exploiting Quantum Tunneling for Zero Side-Channel Key Generation and Distribution
EAGER:利用量子隧道实现零侧信道密钥生成和分发
- 批准号:
2237004 - 财政年份:2022
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Addressing neuron-to-network energy-efficiency gap by investigating neuromorphic processors as a unified dynamical system
通过研究神经形态处理器作为统一的动态系统来解决神经元到网络的能效差距
- 批准号:
1935073 - 财政年份:2019
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
CPS:TTP Option: Synergy: Collaborative Research: Internet of Self-powered Sensors - Towards a Scalable Long-term Condition-based Monitoring and Maintenance of Civil Infrastructure
CPS:TTP 选项:协同:协作研究:自供电传感器互联网 - 实现民用基础设施可扩展的长期基于状态的监测和维护
- 批准号:
1646380 - 财政年份:2016
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Scavenging Thermal-noise Energy and Quantum Fluctuations for Self-powered Time-stamping and Sensing
清除热噪声能量和量子涨落以实现自供电时间戳和传感
- 批准号:
1550096 - 财政年份:2015
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
STARSS: Small: Collaborative: Zero-Power Dynamic Signature for Trust Verification of Passive Sensors and Tags
STARSS:小型:协作:用于无源传感器和标签的信任验证的零功耗动态签名
- 批准号:
1525476 - 财政年份:2015
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Scavenging Thermal-noise Energy and Quantum Fluctuations for Self-powered Time-stamping and Sensing
清除热噪声能量和量子涨落以实现自供电时间戳和传感
- 批准号:
1505767 - 财政年份:2015
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
SHF: Small: FAST: A Simulation and Analysis Framework for Designing Large-Scale Biomolecular-Silicon Hybrid Circuits
SHF:小型:FAST:用于设计大规模生物分子硅混合电路的仿真和分析框架
- 批准号:
1533905 - 财政年份:2014
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
CAREER: Integrated Research and Education in Self-powered Micro-sensing for Embedded and Implantable Structural Health Monitoring
职业:嵌入式和植入式结构健康监测自供电微传感的综合研究和教育
- 批准号:
1533532 - 财政年份:2014
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
AIR: Development and Evaluation of Self-Powered Piezo-Floating-Gate Sensor Chipsets for Embedded and Implantable Structural Health Monitoring
AIR:用于嵌入式和植入式结构健康监测的自供电压电浮栅传感器芯片组的开发和评估
- 批准号:
1127606 - 财政年份:2011
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403560 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
- 批准号:
2329938 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307573 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Design and Implementation of Quantum Databases
合作研究:FET:媒介:量子数据库的设计和实现
- 批准号:
2312755 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant