Collaborative Research: AF: Medium: Polynomial Optimization: Algorithms, Certificates and Applications
合作研究:AF:媒介:多项式优化:算法、证书和应用
基本信息
- 批准号:2211972
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Computational problems arising in diverse fields of sciences and engineering can be modeled as optimizing an appropriate objective function subject to a set of constraints. A case of wide interest that captures a surprising array of problems is when the objective function is a polynomial of low-degree. A rich body of theoretical and applied work has led to a fairly extensive understanding of algorithms and hardness for optimizing linear and quadratic functions on domains such as the unit sphere or the hypercube in high dimensions. The situation for polynomials of degree greater than two is, however, not yet well understood. The goal of this project is to advance the frontiers of optimizing higher-degree polynomials in terms of algorithms to estimate and proofs to approximately bound their optima, and then leverage this enhanced understanding in diverse applications. The motivation is both the intrinsic importance of polynomial optimization, as well as several extraneous contexts (constraint satisfaction, graph theory, high-dimensional geometry, proof complexity, and pseudo-randomness, to name a few) where polynomial/tensor optimization arises naturally and could hold the key to further progress. An an example direction, of high importance in modern learning and inference applications, is the generalization of the frequently used principal-component analysis of matrix-valued data to higher-order tensors.This project presents three carefully crafted and intertwined directions to significantly advance the understanding of polynomial optimization. This includes a fresh approach to finding new rounding algorithms that will lead to approximation algorithms with improved guarantees for maximizing cubic and higher-degree polynomials, which in turn is expected to lead to progress beyond longstanding barriers for discrete problems such as Maximum Cut or Small Set Expansion on graphs. The project also involves new approaches towards hardness results for approximate polynomial optimization; currently only very weak bounds are known, and there is a huge gap between the known algorithmic and hardness results. Third, with impetus provided by some recent work by the investigators on refuting constraint-satisfaction problems, the project will embark on a study of polynomial optimization through the lens of certificates on their optima, extending beyond the state of the art linear-algebraic and spectral certificates. Such certificates could have significant ramifications in pseudo-randomness, producing "certified random objects" that are functionally as good as the gold standard (but often highly elusive) explicit constructions. The research and outreach activities of the project will build bridges to allied research communities in algebraic geometry, statistics, operations research, signal processing, and machine learning. The project investigators will train and mentor several graduate students, and also provide engaging research experiences to undergraduates. The research findings will inform graduate level courses on approximate optimization by unifying several problems under the umbrella of polynomial optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在科学和工程的不同领域中出现的计算问题可以被建模为在一组约束条件下优化适当的目标函数。当目标函数是低次多项式时,一个引起广泛关注的案例捕捉到了一系列令人惊讶的问题。大量的理论和应用工作使人们对优化高维单位球或超立方体等区域上的线性函数和二次函数的算法和难度有了相当广泛的了解。然而,对于次数大于2的多项式的情况,目前还没有很好的理解。这个项目的目标是在算法方面推进优化高次多项式的前沿,以估计和证明它们的最优值,然后在不同的应用中利用这种增强的理解。其动机既是多项式优化的内在重要性,也是几个无关的背景(约束满足、图论、高维几何、证明复杂性和伪随机性等),其中多项式/张量优化自然产生,并可能掌握进一步发展的关键。一个在现代学习和推理应用中非常重要的方向是将经常使用的矩阵数据的主成分分析推广到高阶张量。本项目提出了三个精心制作和相互交织的方向,以显著促进对多项式优化的理解。这包括一种新的方法来寻找新的舍入算法,该方法将导致具有最大化三次和高次多项式的改进的保证的近似算法,这反过来有望导致突破离散问题的长期障碍,例如图上的最大割或小集扩展。该项目还涉及用于近似多项式优化的硬度结果的新方法;目前只知道非常弱的界,并且已知的算法和硬度结果之间存在巨大的差距。第三,在研究人员最近关于驳斥约束满足问题的一些工作的推动下,该项目将通过证书关于其最优的透镜来开始多项式优化的研究,扩展到最新的线性代数和谱证书的状态。这类证书可能会在伪随机性方面产生重大影响,产生在功能上与黄金标准(但往往非常难以捉摸)显式结构一样好的“认证随机对象”。该项目的研究和推广活动将建立与代数几何、统计学、运筹学、信号处理和机器学习方面的联合研究界的桥梁。项目调查人员将培训和指导几名研究生,并为本科生提供引人入胜的研究经验。研究结果将通过将几个问题统一在多项式优化的保护伞下,为研究生级别的课程提供近似优化方面的信息。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bypassing the XOR Trick: Stronger Certificates for Hypergraph Clique Number
绕过 XOR 技巧:超图团数的更强证书
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Guruswami, Venkatesan;Kothari, Pravesh K.;Manohar, Peter
- 通讯作者:Manohar, Peter
Algorithms and certificates for Boolean CSP refutation: smoothed is no harder than random
- DOI:10.1145/3519935.3519955
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:V. Guruswami;Pravesh Kothari;Peter Manohar
- 通讯作者:V. Guruswami;Pravesh Kothari;Peter Manohar
Parameterized Inapproximability of the Minimum Distance Problem over All Fields and the Shortest Vector Problem in All ℓ p Norms
全域最小距离问题和全-p范数中最短向量问题的参数化不可逼近性
- DOI:10.1145/3564246.3585214
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bennett, Huck;Cheraghchi, Mahdi;Guruswami, Venkatesan;Ribeiro, João
- 通讯作者:Ribeiro, João
Quickly-Decodable Group Testing with Fewer Tests: Price–Scarlett’s Nonadaptive Splitting with Explicit Scalars
用更少的测试进行快速解码的组测试:Price-Scarlett-带有显式标量的非自适应分割
- DOI:10.1109/isit54713.2023.10206843
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wang, Hsin-Po;Gabrys, Ryan;Guruswami, Venkatesan
- 通讯作者:Guruswami, Venkatesan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venkatesan Guruswami其他文献
Special Issue “Conference on Computational Complexity 2006” Guest Editors’ Foreword
- DOI:
10.1007/s00037-007-0225-x - 发表时间:
2007-05-01 - 期刊:
- 影响因子:1.000
- 作者:
Venkatesan Guruswami;Valentine Kabanets - 通讯作者:
Valentine Kabanets
PCPs via the low-degree long code and hardness for constrained hypergraph coloring
- DOI:
10.1007/s11856-015-1231-3 - 发表时间:
2015-11-03 - 期刊:
- 影响因子:0.800
- 作者:
Irit Dinur;Venkatesan Guruswami - 通讯作者:
Venkatesan Guruswami
Algorithms for Modular Counting of Roots of Multivariate Polynomials
- DOI:
10.1007/s00453-007-9097-3 - 发表时间:
2007-10-17 - 期刊:
- 影响因子:0.700
- 作者:
Parikshit Gopalan;Venkatesan Guruswami;Richard J. Lipton - 通讯作者:
Richard J. Lipton
The K r -Packing Problem
- DOI:
10.1007/s006070170039 - 发表时间:
2001-03-08 - 期刊:
- 影响因子:2.800
- 作者:
Venkatesan Guruswami;C. Pandu Rangan;M. S. Chang;G. J. Chang;C. K. Wong - 通讯作者:
C. K. Wong
The query complexity of estimating weighted averages
- DOI:
10.1007/s00236-011-0145-8 - 发表时间:
2011-11-17 - 期刊:
- 影响因子:0.500
- 作者:
Amit Chakrabarti;Venkatesan Guruswami;Andrew Wirth;Anthony Wirth - 通讯作者:
Anthony Wirth
Venkatesan Guruswami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venkatesan Guruswami', 18)}}的其他基金
AF: Small: The Polymorphic Gateway between Structure and Algorithms: Beyond CSP Dichotomy
AF:小:结构和算法之间的多态网关:超越 CSP 二分法
- 批准号:
2228287 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Group testing for Real-Time Polymerase Chain Reactions: From Primer Selection to Amplification Curve Analysis
合作研究:CIF:中:实时聚合酶链式反应的分组测试:从引物选择到扩增曲线分析
- 批准号:
2107347 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Group testing for Real-Time Polymerase Chain Reactions: From Primer Selection to Amplification Curve Analysis
合作研究:CIF:中:实时聚合酶链式反应的分组测试:从引物选择到扩增曲线分析
- 批准号:
2210823 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: The Polymorphic Gateway between Structure and Algorithms: Beyond CSP Dichotomy
AF:小:结构和算法之间的多态网关:超越 CSP 二分法
- 批准号:
1908125 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Small: New Coding Techniques for Synchronization Errors
CIF:小:针对同步错误的新编码技术
- 批准号:
1814603 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Frontiers in coding for cloud storage systems
CIF:媒介:协作研究:云存储系统编码前沿
- 批准号:
1563742 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CCF: AF: Student Travel Support for the 2016 Computational Complexity Conference
CCF:AF:2016 年计算复杂性会议的学生旅行支持
- 批准号:
1624150 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Small: Approximate optimization: Algorithms, Hardness, and Integrality Gaps
AF:小:近似优化:算法、硬度和完整性差距
- 批准号:
1526092 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CCF: AF: Student Travel Support for the 2015 Computational Complexity Conference
CCF:AF:2015 年计算复杂性会议的学生旅行支持
- 批准号:
1535376 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF/AF: Small: Some fundamental complexity-inspired coding theory challenges
CIF/AF:小:一些由复杂性引发的基本编码理论挑战
- 批准号:
1422045 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant