AF: Small: The Polymorphic Gateway between Structure and Algorithms: Beyond CSP Dichotomy
AF:小:结构和算法之间的多态网关:超越 CSP 二分法
基本信息
- 批准号:2228287
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational problems are ubiquitous and exhibit a diverse range of behaviors in terms of how quickly and effectively they can be solved. One of the broad intellectual challenges driving research in the theory of computation is the following: What underlying mathematical structure (or lack thereof) in a computational problem leads to an efficient algorithm for solving it (or dictates its intractability)? Algorithms are everywhere in today's world, and understanding their power and limitations is important both for foundational reasons as well as the myriad applications that efficient algorithms empower. Given the vast landscape of problems and possible clever algorithms to solve them, it is simplisic to hope to explain the underpinnings of the easiness/hardness of all problems with a single theory. However, recent progress has led to elegant theories that fully explain the computational complexity of rich classes of problems, notably constraint satisfaction problems (CSPs) and their variants. In this setting, an efficient algorithm exists precisely when there are non-trivial operations called polymorphisms under which the solution space is closed (this can be interpreted as a discrete analog of convexity that is typically at the heart of tractability of continuous optimization problems). Inspired by the success story for constraint satisfaction, the project will investigate the existence of polymorphic principles in broader contexts --- namely, whether "interesting" ways to combine solutions to get new solutions lead to efficient algorithms. The project will enable a cross-fertilization of ideas between the approximation algorithms and optimization literature and the powerful algebraic methods used to study CSPs, and foster enhanced collaborations between these research communities. Due to its balanced focus on exploratory directions and concrete problems, the project is well-suited for investigation by students, and will actively engage and train graduate as well as undergraduate students. The accompanying educational plan will distill suitable segments of the interplay between polymorphisms and algorithms for inclusion in the theory CS curriculum at various levels.As a specific thrust, the project will investigate the complexity of promise versions of CSPs, where the algorithm is allowed to find an assignment satisfying relaxed versions of the constraints defining the CSP. The promise CSP framework is very general and captures a rich variety of problems, most notably approximate (hyper)-graph coloring and variants. While polymorphisms of CSPs are closed under composition (and therefore a rich family can be built from a single non-trivial polymorphism), polymorphisms inherently lose this closure under composition in the promise setting. As a result, the study of promise CSPs calls for significant new ideas on both the algorithms and hardness sides. In particular, the research will undertake a combination of two highly successful methodologies, the algebraic approach for CSPs and the probabilistically checkable proofs (PCP) based theory for approximation. On the algorithmic front, the research will uncover new algorithms in the presence of rich enough families of polymorphisms. The project will also investigate polymorphic gateways between structure and algorithms in broader contexts, including in fast exponential algorithms where partial polymorphisms govern the (exponential) runtime of algorithms for NP-hard CSPs. The research will forge new connections with diverse topics including optimization, fixed-parameter tractability, fine-grained complexity, judgement aggregation, PCP, extremal combinatorics, and universal algebra.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算问题是无处不在的,并且在如何快速有效地解决它们方面表现出各种各样的行为。推动计算理论研究的一个广泛的智力挑战是:计算问题中的什么基本数学结构(或缺乏数学结构)导致解决它的有效算法(或决定其棘手性)? 算法在当今世界无处不在,理解它们的力量和局限性对于基础原因以及高效算法赋予的无数应用程序都很重要。考虑到问题的广阔前景和解决它们的可能的聪明算法,希望用一个单一的理论来解释所有问题的易/难的基础是非常必要的。然而,最近的进展已经产生了优雅的理论,可以充分解释丰富类别的问题的计算复杂性,特别是约束满足问题(CSP)及其变体。在这种情况下,当存在称为多态性的非平凡操作时,有效的算法精确地存在,在这种操作下,解空间是封闭的(这可以解释为凸性的离散模拟,凸性通常是连续优化问题的易处理性的核心)。受约束满足成功案例的启发,该项目将在更广泛的背景下调查多态原则的存在-即,是否“有趣”的方式来联合收割机的解决方案,以获得新的解决方案,导致有效的算法。该项目将使近似算法和优化文献以及用于研究CSP的强大代数方法之间的思想交叉,并促进这些研究团体之间的合作。 由于其平衡的重点探索方向和具体问题,该项目非常适合学生的调查,并将积极参与和培养研究生和本科生。伴随的教育计划将提取适当的片段多态性和算法之间的相互作用,包括在理论CS courses.As一个具体的推力,该项目将调查的复杂性承诺版本的CSP,在那里的算法是允许找到一个分配满足放松版本的约束定义的CSP。promise CSP框架非常通用,并捕获了各种各样的问题,最值得注意的是近似(超)图着色和变体。虽然CSP的多态性在组合下是封闭的(因此可以从单个非平凡多态性构建丰富的家族),但多态性在承诺设置中内在地失去了组合下的这种封闭性。因此,对承诺CSP的研究在算法和硬度方面都需要有重大的新想法。特别是,该研究将结合两种非常成功的方法,即CSP的代数方法和基于概率可检验证明(PCP)的近似理论。在算法方面,该研究将在存在足够丰富的多态性家族的情况下发现新算法。该项目还将在更广泛的背景下研究结构和算法之间的多态网关,包括快速指数算法,其中部分多态性控制NP-hard CSP算法的(指数)运行时间。该研究将与各种主题建立新的联系,包括优化,固定参数易处理性,细粒度复杂性,判断聚合,PCP,极值组合学和通用代数。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parameterized Inapproximability of the Minimum Distance Problem over All Fields and the Shortest Vector Problem in All ℓ p Norms
全域最小距离问题和全-p范数中最短向量问题的参数化不可逼近性
- DOI:10.1145/3564246.3585214
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bennett, Huck;Cheraghchi, Mahdi;Guruswami, Venkatesan;Ribeiro, João
- 通讯作者:Ribeiro, João
Conditional Dichotomy of Boolean Ordered Promise CSPs
布尔有序 Promise CSP 的条件二分法
- DOI:10.46298/theoretics.23.2
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Brakensiek, Joshua;Guruswami, Venkatesan;Sandeep, Sai
- 通讯作者:Sandeep, Sai
SDPs and Robust Satisfiability of Promise CSP
SDP 和 Promise CSP 的鲁棒可满足性
- DOI:10.1145/3564246.3585180
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Brakensiek, Joshua;Guruswami, Venkatesan;Sandeep, Sai
- 通讯作者:Sandeep, Sai
CNF Satisfiability in a Subspace and Related Problems
子空间中的 CNF 可满足性及相关问题
- DOI:10.1007/s00453-022-00958-4
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Arvind, V.;Guruswami, Venkatesan
- 通讯作者:Guruswami, Venkatesan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venkatesan Guruswami其他文献
Special Issue “Conference on Computational Complexity 2006” Guest Editors’ Foreword
- DOI:
10.1007/s00037-007-0225-x - 发表时间:
2007-05-01 - 期刊:
- 影响因子:1.000
- 作者:
Venkatesan Guruswami;Valentine Kabanets - 通讯作者:
Valentine Kabanets
PCPs via the low-degree long code and hardness for constrained hypergraph coloring
- DOI:
10.1007/s11856-015-1231-3 - 发表时间:
2015-11-03 - 期刊:
- 影响因子:0.800
- 作者:
Irit Dinur;Venkatesan Guruswami - 通讯作者:
Venkatesan Guruswami
Algorithms for Modular Counting of Roots of Multivariate Polynomials
- DOI:
10.1007/s00453-007-9097-3 - 发表时间:
2007-10-17 - 期刊:
- 影响因子:0.700
- 作者:
Parikshit Gopalan;Venkatesan Guruswami;Richard J. Lipton - 通讯作者:
Richard J. Lipton
The K r -Packing Problem
- DOI:
10.1007/s006070170039 - 发表时间:
2001-03-08 - 期刊:
- 影响因子:2.800
- 作者:
Venkatesan Guruswami;C. Pandu Rangan;M. S. Chang;G. J. Chang;C. K. Wong - 通讯作者:
C. K. Wong
The query complexity of estimating weighted averages
- DOI:
10.1007/s00236-011-0145-8 - 发表时间:
2011-11-17 - 期刊:
- 影响因子:0.500
- 作者:
Amit Chakrabarti;Venkatesan Guruswami;Andrew Wirth;Anthony Wirth - 通讯作者:
Anthony Wirth
Venkatesan Guruswami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venkatesan Guruswami', 18)}}的其他基金
Collaborative Research: AF: Medium: Polynomial Optimization: Algorithms, Certificates and Applications
合作研究:AF:媒介:多项式优化:算法、证书和应用
- 批准号:
2211972 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Group testing for Real-Time Polymerase Chain Reactions: From Primer Selection to Amplification Curve Analysis
合作研究:CIF:中:实时聚合酶链式反应的分组测试:从引物选择到扩增曲线分析
- 批准号:
2107347 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Group testing for Real-Time Polymerase Chain Reactions: From Primer Selection to Amplification Curve Analysis
合作研究:CIF:中:实时聚合酶链式反应的分组测试:从引物选择到扩增曲线分析
- 批准号:
2210823 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: The Polymorphic Gateway between Structure and Algorithms: Beyond CSP Dichotomy
AF:小:结构和算法之间的多态网关:超越 CSP 二分法
- 批准号:
1908125 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CIF: Small: New Coding Techniques for Synchronization Errors
CIF:小:针对同步错误的新编码技术
- 批准号:
1814603 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Frontiers in coding for cloud storage systems
CIF:媒介:协作研究:云存储系统编码前沿
- 批准号:
1563742 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CCF: AF: Student Travel Support for the 2016 Computational Complexity Conference
CCF:AF:2016 年计算复杂性会议的学生旅行支持
- 批准号:
1624150 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Approximate optimization: Algorithms, Hardness, and Integrality Gaps
AF:小:近似优化:算法、硬度和完整性差距
- 批准号:
1526092 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CCF: AF: Student Travel Support for the 2015 Computational Complexity Conference
CCF:AF:2015 年计算复杂性会议的学生旅行支持
- 批准号:
1535376 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CIF/AF: Small: Some fundamental complexity-inspired coding theory challenges
CIF/AF:小:一些由复杂性引发的基本编码理论挑战
- 批准号:
1422045 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
- 批准号:
BB/Y004426/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Windows for the Small-Sized Telescope (SST) Cameras of the Cherenkov Telescope Array (CTA)
切伦科夫望远镜阵列 (CTA) 小型望远镜 (SST) 相机的窗口
- 批准号:
ST/Z000017/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant