HCC: Medium: Grid-Free Monte Carlo Methods for Digital Geometry Processing

HCC:中:用于数字几何处理的无网格蒙特卡罗方法

基本信息

  • 批准号:
    2212290
  • 负责人:
  • 金额:
    $ 119.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Problems across science and engineering demand accurate predictions about the behavior of the natural world, which are often obtained by numerically approximating solutions to so-called partial differential equations (PDEs). While such predictions can help us understand diverse phenomena such as the energy efficiency of complex building models or the transport of groundwater pollutants through layers of rock and soil, the algorithms for solving the relevant equations have difficulty managing the immense complexity found in nature, especially as emerging technology makes it possible to acquire ever more detailed descriptions of geometry. A major challenge is that traditional algorithms must partition space into small elements prior to solving equations, and for detailed geometry this process of discretization can both take far more time than solving the equation itself and also introduce error that gives a false sense of the solution. This research side-steps discretization entirely by building a bridge between PDEs and scalable, reliable Monte Carlo methods developed for photorealistic image generation. The main goal is to expand the set of PDEs that can be solved using Monte Carlo techniques and to provide access to these tools via free and open source software that is easily usable by non-experts. The effectiveness of the approach for real-world applications will be evaluated through collaborations with industry partners to address problems in structural analysis, engineering design, and robotic path planning. The project will have additional broad impact by building excitement about STEM among students and the broader public, via online tutorials and open source course material.The technical starting point for the project is Muller's walk on spheres (WoS) method, which provides unbiased estimates of the solution to a constant-coefficient Laplace equation with Dirichlet boundary conditions. Although this method has been generalized somewhat to other diffusive PDEs, it still lags far behind the capability of modern finite element and finite difference methods, and WoS methods cannot yet be applied to many problems important for engineering and analysis, such as linear elasticity or Stokes flow. This project helps close the gap by exploring new WoS methods that handle anisotropic and spatially varying coefficients, more general Neumann and Robin boundary conditions, nonlinear PDEs, and PDE-based optimization problems. A key insight is that sophisticated Monte Carlo techniques developed for photorealistic rendering in computer graphics (variance reduction, density estimation, etc.) can be adapted to PDEs, by casting both problems in a common mathematical framework. Project outcomes will include critical algorithmic components, such as high-performance closest point queries for a rich class of geometric representations (implicit surfaces, subdivision surfaces, etc.), and a domain-specific language that enables PDE specifications to be automatically translated into unbiased WoS estimators. The resulting methods share many features with methods from Monte Carlo rendering: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations. They also allow dynamic changes to problem data and domain geometry, thereby helping to provide immediate, progressive feedback that tightens the engineering design cycle.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学和工程领域的问题需要对自然世界的行为进行准确的预测,这通常是通过所谓的偏微分方程(PDEs)的数值近似解来获得的。虽然这样的预测可以帮助我们理解各种现象,如复杂建筑模型的能源效率或地下水污染物通过岩层和土壤的运输,但解决相关方程的算法难以管理自然界中发现的巨大复杂性,特别是随着新兴技术使获取更详细的几何描述成为可能。一个主要的挑战是,传统算法必须在求解方程之前将空间划分为小元素,对于详细的几何图形,这种离散化过程不仅比求解方程本身花费更多的时间,而且还会引入误差,给人一种错误的解感。本研究通过在偏微分方程和可扩展、可靠的蒙特卡罗方法之间建立桥梁,完全避免了离散化,该方法用于逼真的图像生成。其主要目标是扩展可以使用蒙特卡罗技术解决的pde集,并通过免费和开放源码软件提供对这些工具的访问,这些软件很容易被非专家使用。该方法在实际应用中的有效性将通过与行业合作伙伴的合作来评估,以解决结构分析、工程设计和机器人路径规划中的问题。通过在线教程和开源课程材料,该项目将在学生和更广泛的公众中建立对STEM的兴趣,从而产生额外的广泛影响。该项目的技术起点是Muller的球体行走(WoS)方法,该方法提供了具有Dirichlet边界条件的常系数拉普拉斯方程解的无偏估计。虽然该方法已在一定程度上推广到其他扩散偏微分方程,但其能力仍远远落后于现代有限元和有限差分方法,并且WoS方法还不能应用于许多工程和分析的重要问题,如线弹性或Stokes流。该项目通过探索新的WoS方法来处理各向异性和空间变化系数、更一般的Neumann和Robin边界条件、非线性偏微分方程和基于偏微分方程的优化问题,有助于缩小差距。一个关键的见解是,为计算机图形的逼真渲染(方差减少、密度估计等)开发的复杂蒙特卡罗技术可以通过将这两个问题放在一个共同的数学框架中来适应pde。项目成果将包括关键的算法组件,例如针对丰富的几何表示类(隐式曲面、细分曲面等)的高性能最近点查询,以及一种特定于领域的语言,该语言使PDE规范能够自动转换为无偏WoS估计器。由此产生的方法与蒙特卡罗呈现的方法共享许多特征:没有网格,微不足道的并行性,以及在任何点评估解决方案而无需求解全局方程组的能力。它们还允许对问题数据和领域几何形状进行动态更改,从而帮助提供即时的、渐进的反馈,从而缩短工程设计周期。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions
星上行走:具有诺伊曼边界条件的偏微分方程的无网格蒙特卡罗方法
  • DOI:
    10.1145/3592398
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Sawhney, Rohan;Miller, Bailey;Gkioulekas, Ioannis;Crane, Keenan
  • 通讯作者:
    Crane, Keenan
Boundary Value Caching for Walk on Spheres
球体行走的边界值缓存
  • DOI:
    10.1145/3592400
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Miller, Bailey;Sawhney, Rohan;Crane, Keenan;Gkioulekas, Ioannis
  • 通讯作者:
    Gkioulekas, Ioannis
Surface Simplification using Intrinsic Error Metrics
使用固有误差度量进行表面简化
  • DOI:
    10.1145/3592403
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Liu, Hsueh-Ti Derek;Gillespie, Mark;Chislett, Benjamin;Sharp, Nicholas;Jacobson, Alec;Crane, Keenan
  • 通讯作者:
    Crane, Keenan
Winding Numbers on Discrete Surfaces
离散表面上的绕组数
  • DOI:
    10.1145/3592401
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Feng, Nicole;Gillespie, Mark;Crane, Keenan
  • 通讯作者:
    Crane, Keenan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keenan Crane其他文献

A Dirac Operator for Extrinsic Shape Analysis
用于外在形状分析的狄拉克算子
A Heat Method for Generalized Signed Distance
广义有符号距离的热法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicole Feng;Keenan Crane
  • 通讯作者:
    Keenan Crane
Conformal Geometry of Simplicial Surfaces ( ROUGH DRAFT )
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keenan Crane
  • 通讯作者:
    Keenan Crane
Conformal Geometry Processing
共形几何处理
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keenan Crane
  • 通讯作者:
    Keenan Crane
A Two-Color Map of Pluto’s Sub-Charon Hemisphere
冥王星副卡戎半球的双色地图
  • DOI:
    10.1086/318008
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Young;R. Binzel;Keenan Crane
  • 通讯作者:
    Keenan Crane

Keenan Crane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keenan Crane', 18)}}的其他基金

CAREER: Algorithms and Data Structures for Robust 3D Geometry Processing via Intrinsic Triangulations
职业:通过内在三角测量进行鲁棒 3D 几何处理的算法和数据结构
  • 批准号:
    1943123
  • 财政年份:
    2020
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
AF: Small: Collaborative Research: Computational Representations for Design and Fabrication of Developable Surfaces
AF:小型:协作研究:可展曲面设计和制造的计算表示
  • 批准号:
    1717320
  • 财政年份:
    2017
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1304254
  • 财政年份:
    2013
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Fellowship Award

相似海外基金

RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了