CIF: III: Medium: MoDL+: Analytical Foundations for Deep Learning and Inference over Graphs
CIF:III:媒介:MoDL:深度学习和图推理的分析基础
基本信息
- 批准号:2212318
- 负责人:
- 金额:$ 119.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep learning, based on deep neural networks (DNNs), has demonstrated superior power in solving many difficult real-world problems, such as image classification, strategy-game playing, speech recognition, and medical image analysis, and is poised to revolutionize science and engineering, bringing broad benefits to society at large. Building on the success of DNNs, recent years have seen a flurry of research activities focused on developing graph neural networks (GNNs) in order to tackle important problems on graph-structured data. This award will address fundamental theoretical problems with deep GNNs, shedding light on their power and limitations and leading to new well-grounded GNN architectures. Guided by theory, the team of researchers will develop deep graph-learning algorithms for solving practical problems in 5G/NextG networks and power grids. The insights gained from this research will benefit diverse research domains, and aid in managing and securing physical and digital infrastructure. The award will also support undergraduate students, graduate students, and postdoctoral researchers from underrepresented minority groups in research and educational activities as well as organization of K-12 outreach programs.This award will advance a theory-guided and application-driven paradigm for tackling challenging fundamental research questions in deep graph learning, with a particular emphasis on applications to 5G/NextG wireless networks and power (micro)grid systems. The award will make connections between the theory of partial differential equations (PDEs) and deep graph-guided learning by establishing continuum limits for deep graph neural networks, utilizing PDE-guided deep graph neural networks, and using a novel Morse theory approach to understand the generalization power of GNNs. It will also advance innovative sensitivity-regularized deep-learning approaches, and provide an in-depth empirical study of the representation power of GNNs compared to standard DNNs, demystifying the role of graphs in deep learning. The project will help lay the needed theoretical foundation to guide the design of theory-guided deep graph learning algorithms to solve practical problems in 5G/NextG networks and power grids in a principled manner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于深度神经网络(DNN)的深度学习在解决许多困难的现实世界问题(如图像分类、战略游戏、语音识别和医学图像分析)方面表现出上级能力,并有望彻底改变科学和工程,为整个社会带来广泛的利益。在DNN成功的基础上,近年来出现了一系列研究活动,重点是开发图神经网络(GNN),以解决图结构数据的重要问题。该奖项将解决深度GNN的基本理论问题,揭示它们的力量和局限性,并导致新的基础良好的GNN架构。在理论指导下,研究团队将开发深度图学习算法,用于解决5G/NextG网络和电网中的实际问题。从这项研究中获得的见解将有利于不同的研究领域,并有助于管理和保护物理和数字基础设施。该奖项还将支持来自少数民族的本科生、研究生和博士后研究人员参与研究和教育活动,以及组织K-12外展计划。该奖项将推动理论指导和应用驱动的范式,以解决深度图学习中具有挑战性的基础研究问题,特别强调5G/NextG无线网络和电力(微)电网系统的应用。该奖项将通过建立深度图神经网络的连续极限,利用偏微分方程(PDE)引导的深度图神经网络,以及使用新的莫尔斯理论方法来理解GNN的泛化能力,将偏微分方程(PDE)理论与深度图引导的学习联系起来。它还将推进创新的灵敏度正则化深度学习方法,并提供GNN与标准DNN相比的表示能力的深入实证研究,揭开图在深度学习中的神秘面纱。该项目将有助于奠定必要的理论基础,指导理论引导的深度图学习算法的设计,以原则性的方式解决5G/NextG网络和电网中的实际问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time-Domain Generalization of Kron Reduction
Kron 约简的时域推广
- DOI:10.1109/lcsys.2022.3185939
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Singh, Manish K.;Dhople, Sairaj;Dorfler, Florian;Giannakis, Georgios B.
- 通讯作者:Giannakis, Georgios B.
Learning while Respecting Privacy and Robustness to Adversarial Distributed Datasets
- DOI:10.23919/eusipco55093.2022.9909977
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:A. Sadeghi;G. Giannakis
- 通讯作者:A. Sadeghi;G. Giannakis
Utilizing contrastive learning for graph-based active learning of SAR data
- DOI:10.1117/12.2663099
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Jason S. Brown;Riley O'Neill;J. Calder;A. Bertozzi
- 通讯作者:Jason S. Brown;Riley O'Neill;J. Calder;A. Bertozzi
Surrogate Modeling for Bayesian Optimization Beyond a Single Gaussian Process
- DOI:10.1109/tpami.2023.3264741
- 发表时间:2022-05
- 期刊:
- 影响因子:23.6
- 作者:Qin Lu;Konstantinos D. Polyzos;Bingcong Li;G. Giannakis
- 通讯作者:Qin Lu;Konstantinos D. Polyzos;Bingcong Li;G. Giannakis
Deep semi-supervised label propagation for SAR image classification
- DOI:10.1117/12.2663665
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Joshua Enwright;Harris Hardiman-Mostow;J. Calder;A. Bertozzi
- 通讯作者:Joshua Enwright;Harris Hardiman-Mostow;J. Calder;A. Bertozzi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Calder其他文献
Jeffrey Calder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Calder', 18)}}的其他基金
CAREER: Harnessing the Continuum for Big Data: Partial Differential Equations, Calculus of Variations, and Machine Learning
职业:利用大数据的连续体:偏微分方程、变分法和机器学习
- 批准号:
1944925 - 财政年份:2020
- 资助金额:
$ 119.98万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations, Monotone Numerical Schemes, and Scaling Limits for Semi-Supervised Learning on Graphs
图半监督学习的非线性偏微分方程、单调数值方案和标度极限
- 批准号:
1713691 - 财政年份:2017
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and continuum limits for large discrete sorting problems
大型离散排序问题的非线性偏微分方程和连续极限
- 批准号:
1656030 - 财政年份:2016
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and continuum limits for large discrete sorting problems
大型离散排序问题的非线性偏微分方程和连续极限
- 批准号:
1500829 - 财政年份:2015
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
III: Medium: Linear Algebra Operators in Databases to Support Analytic and Machine-Learning Workloads
III:中:数据库中的线性代数运算符支持分析和机器学习工作负载
- 批准号:
2312991 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant
III: Medium: Advancing Deep Learning for Inverse Modeling
III:媒介:推进逆向建模的深度学习
- 批准号:
2313174 - 财政年份:2023
- 资助金额:
$ 119.98万 - 项目类别:
Standard Grant