Nonlinear partial differential equations and continuum limits for large discrete sorting problems
大型离散排序问题的非线性偏微分方程和连续极限
基本信息
- 批准号:1500829
- 负责人:
- 金额:$ 7.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to study algorithms for sorting large amounts of high-dimensional data. Sorting, or ordering, data is one of the most fundamental problems in computational science, and in today's data-driven world, there is a need to develop new algorithms and tools for handling massive amounts of data in novel ways. Many sorting algorithms are computationally intensive, but have a highly predictable structure when applied to very large amounts of data. A deep mathematical understanding of this structure will lead to new insights that have the potential to significantly improve performance. Applications of sorting are ubiquitous in science and engineering, and include the analysis of DNA sequences, sorting of hits in web searches, and fingerprint identification. A significant improvement in any sorting algorithm would have a broad impact on many fields of science and engineering. This project will study two algorithms for sorting multivariate data: non-dominated sorting, and convex hull ordering. Non-dominated sorting is fundamental in multi-objective optimization, which is commonly used in scientific and engineering contexts. It has recently been shown that non-dominated sorting of random points in Euclidean space has a continuum limit that corresponds to solving a Hamilton-Jacobi equation. The first objective of this project is to study the regularity of viscosity solutions of this Hamilton-Jacobi equation, and to develop highly accurate numerical schemes for approximating its solution. The second, and main objective, is to study convex hull ordering, which is widely used in robust statistics. It is conjectured that convex hull ordering has a continuum limit that corresponds to affine invariant curvature motion. This project aims to study, and prove rigorously, this conjectured continuum limit. This result provides an asymptotic distributional theory for convex hull ordering, which is an open problem in robust statistics. Another goal of this project is to exploit this continuum limit to develop a fast algorithm for approximate convex hull ordering that can handle massive amounts of data.
这个项目的目标是研究对大量高维数据进行排序的算法。数据排序是计算科学中最基本的问题之一,在当今数据驱动的世界中,需要开发新的算法和工具,以新颖的方式处理大量数据。许多排序算法都是计算密集型的,但在应用于非常大量的数据时具有高度可预测的结构。对这种结构的深刻数学理解将导致新的见解,有可能显着提高性能。排序的应用在科学和工程中无处不在,包括DNA序列分析、网络搜索中的命中排序和指纹识别。任何排序算法的重大改进都将对科学和工程的许多领域产生广泛的影响。本计画将研究两种多元资料排序的演算法:非支配排序与凸船体排序。非支配排序是多目标优化的基础,通常用于科学和工程背景。最近的研究表明,欧氏空间中随机点的非支配排序有一个连续极限,对应于求解一个Hamilton-Jacobi方程。本计画的第一个目标是研究此Hamilton-Jacobi方程粘性解的正则性,并发展高精度数值格式来逼近其解。第二,也是主要的目标,是研究凸船体排序,这是广泛使用的鲁棒统计。证明了凸船体序有一个连续极限,对应于仿射不变曲率运动。这个项目的目的是研究,并严格证明,这个约束连续极限。这一结果为凸船体序提供了一个渐近分布理论,而凸船体序是鲁棒统计中的一个公开问题。这个项目的另一个目标是利用这个连续极限来开发一个可以处理大量数据的近似凸船体排序的快速算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Calder其他文献
Jeffrey Calder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Calder', 18)}}的其他基金
CIF: III: Medium: MoDL+: Analytical Foundations for Deep Learning and Inference over Graphs
CIF:III:媒介:MoDL:深度学习和图推理的分析基础
- 批准号:
2212318 - 财政年份:2022
- 资助金额:
$ 7.64万 - 项目类别:
Continuing Grant
CAREER: Harnessing the Continuum for Big Data: Partial Differential Equations, Calculus of Variations, and Machine Learning
职业:利用大数据的连续体:偏微分方程、变分法和机器学习
- 批准号:
1944925 - 财政年份:2020
- 资助金额:
$ 7.64万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations, Monotone Numerical Schemes, and Scaling Limits for Semi-Supervised Learning on Graphs
图半监督学习的非线性偏微分方程、单调数值方案和标度极限
- 批准号:
1713691 - 财政年份:2017
- 资助金额:
$ 7.64万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and continuum limits for large discrete sorting problems
大型离散排序问题的非线性偏微分方程和连续极限
- 批准号:
1656030 - 财政年份:2016
- 资助金额:
$ 7.64万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硝态氮氨化菌群富集及其与部分反硝化协同的机制研究
- 批准号:51808045
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
微分动力系统的测度和熵
- 批准号:11101447
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
部分双曲系统的遍历性研究
- 批准号:11001284
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
低温绝缘材料局部放电特性与电老化机理的研究
- 批准号:50577038
- 批准年份:2005
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 7.64万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 7.64万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 7.64万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 7.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 7.64万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 7.64万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 7.64万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 7.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
- 批准号:
RGPIN-2017-04313 - 财政年份:2022
- 资助金额:
$ 7.64万 - 项目类别:
Discovery Grants Program - Individual
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 7.64万 - 项目类别:
Continuing Grant