Collaborative Research: III: Medium: Conditional Transport: Theory, Methods, Computation, and Applications
合作研究:III:媒介:条件传输:理论、方法、计算和应用
基本信息
- 批准号:2212418
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Measuring the difference between probability distributions is a fundamental problem in statistics and machine learning (ML). It plays essential roles in many critical ML and artificial intelligence (AI) tasks, such as building deep generative models to synthesize realistic data and training deep reinforcement learning agents. The project’s novelties are 1) establishing Conditional Transport (CT) as a new statistical distance between probability distributions to address several key limitations of existing methods, 2) developing a new distribution-based learning framework with efficient approximate computation algorithms, and 3) applying CT to better solve modern ML/AI problems involving large-scale and high-dimensional data and models. The project’s impacts are 1) advancing distribution-based ML/AI fundamental research, and 2) enabling efficient and robust methods for the ML/AI applications in science, engineering, and bio-medicine, in particular in inverse materials design and multi-omics data analysis. The investigators will integrate the proposed research with training, education, and outreach activities for next-generation workforce development, by developing new ML/AI course materials to better prepare students and researchers at all levels with a diversified educational background, promoting diversity, equity, and inclusion with the emphasis on attracting talents from under-represented groups, with a special emphasis on broadening participation in interdisciplinary computing. This project aims to establish CT and its enabled distribution-based learning framework, which has the paradigm-shift potential to further advance ML/AI research with new models and inference algorithms. In particular, 1) theoretical understanding of CT will provide the foundation of this new learning framework with desired model representation power as well as learning stability. 2) Maximum likelihood estimation, Bayesian inference, and entropy regularized optimal transport will be revisited based on CT, enabling efficient Bayesian computation and optimization taking advantage of modern deep network models and stochastic gradient descent tools. 3) New and improved ML/AI models and inference algorithms will be developed for deep generative modeling, contrastive representation learning, and deep reinforcement learning to advance the state of the art. 4) Inverse materials design and multi-omics data analysis, two real-world applications that require reliable uncertainty quantification for consequent critical decision making, will showcase the advantages of the CT-based methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
测量概率分布之间的差异是统计学和机器学习(ML)中的一个基本问题。它在许多关键的机器学习和人工智能(AI)任务中起着至关重要的作用,例如构建深度生成模型来合成真实数据和训练深度强化学习代理。该项目的创新之处在于:1)建立条件传输(CT)作为概率分布之间的新统计距离,以解决现有方法的几个关键限制; 2)开发一种新的基于分布的学习框架,具有高效的近似计算算法; 3)应用CT更好地解决涉及大规模和高维数据和模型的现代ML/AI问题。该项目的影响是1)推进基于分布的ML/AI基础研究,2)为ML/AI在科学,工程和生物医学中的应用提供高效和强大的方法,特别是在逆材料设计和多组学数据分析中。调查人员将把拟议的研究与下一代劳动力发展的培训、教育和外联活动结合起来,开发新的ML/AI课程材料,以更好地为各级学生和研究人员做好准备,使他们具有多样化的教育背景,促进多样性、公平和包容性,重点是吸引来自代表性不足群体的人才。特别强调扩大跨学科计算的参与。该项目旨在建立CT及其支持的基于分布的学习框架,该框架具有范式转移的潜力,可以通过新的模型和推理算法进一步推进ML/AI研究。特别是,1)对CT的理论理解将为这种新的学习框架提供所需的模型表示能力以及学习稳定性的基础。2)最大似然估计、贝叶斯推理和熵正则化最优传输将基于CT进行重新讨论,从而利用现代深度网络模型和随机梯度下降工具实现高效的贝叶斯计算和优化。3)将开发新的和改进的ML/AI模型和推理算法,用于深度生成建模,对比表示学习和深度强化学习,以推进最新技术水平。4)逆向材料设计和多组学数据分析,这两个现实世界的应用需要可靠的不确定性量化,以进行后续的关键决策,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
POUF: Prompt-oriented unsupervised fine-tuning for large pre-trained models
- DOI:10.48550/arxiv.2305.00350
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Korawat Tanwisuth;Shujian Zhang;Huangjie Zheng;Pengcheng He;Mingyuan Zhou
- 通讯作者:Korawat Tanwisuth;Shujian Zhang;Huangjie Zheng;Pengcheng He;Mingyuan Zhou
CARD: Classification and Regression Diffusion Models
- DOI:10.48550/arxiv.2206.07275
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Xizewen Han;Huangjie Zheng;Mingyuan Zhou
- 通讯作者:Xizewen Han;Huangjie Zheng;Mingyuan Zhou
Weibull Racing Survival Analysis with Competing Events, Left Truncation, and Time-varying Covariates
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Quan Zhang;Mingyuan Zhou
- 通讯作者:Quan Zhang;Mingyuan Zhou
Diffusion Policies as an Expressive Policy Class for Offline Reinforcement Learning
- DOI:10.48550/arxiv.2208.06193
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Zhendong Wang;Jonathan J. Hunt;Mingyuan Zhou
- 通讯作者:Zhendong Wang;Jonathan J. Hunt;Mingyuan Zhou
A Variational Edge Partition Model for Supervised Graph Representation Learning
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Yingying He;Chaojie Wang;Hao Zhang;Bo Chen;Mingyuan Zhou
- 通讯作者:Yingying He;Chaojie Wang;Hao Zhang;Bo Chen;Mingyuan Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingyuan Zhou其他文献
Augmentable Gamma Belief Networks
可增强伽玛信念网络
- DOI:
- 发表时间:
2015-12 - 期刊:
- 影响因子:6
- 作者:
Mingyuan Zhou;Yulai Cong;Bo Chen - 通讯作者:
Bo Chen
Multimodal Weibull Variational Autoencoder for Jointly Modeling Image-Text Data
用于联合建模图像文本数据的多模态威布尔变分自动编码器
- DOI:
10.1109/tcyb.2021.3070881 - 发表时间:
2021-04 - 期刊:
- 影响因子:11.8
- 作者:
Chaojie Wang;Bo Chen;Sucheng Xiao;Zhengjue Wang;Hao Zhang;Penghui Wang;Ning Han;Mingyuan Zhou - 通讯作者:
Mingyuan Zhou
Production of furfural from xylose and hemicelluloses using tin-loaded sulfonated diatomite as solid acid catalyst in biphasic system
- DOI:
10.1016/j.biteb.2019.03.001 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Qingqing Jia;Xingning Teng;Senshen Yu;Zhihao Si;Guozhen Li;Mingyuan Zhou;Di Cai;Peiyong Qin;Biqiang Chen - 通讯作者:
Biqiang Chen
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
神经信息处理系统的进展 25:2012 年第 26 届神经信息处理系统年会,NIPS 2012
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mingyuan Zhou;L. Carin - 通讯作者:
L. Carin
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
具有可扩展混合贝叶斯推理的深度自动编码主题模型
- DOI:
10.1109/tpami.2020.3003660 - 发表时间:
2021 - 期刊:
- 影响因子:23.6
- 作者:
Hao Zhang;Bo Chen;Yulai Cong;D;an Guo;Hongwei Liu;Mingyuan Zhou - 通讯作者:
Mingyuan Zhou
Mingyuan Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingyuan Zhou', 18)}}的其他基金
III: Small: Collaborative Research: Combinatorial Collaborative Clustering for Simultaneous Patient Stratification and Biomarker Identification
III:小型:协作研究:用于同时进行患者分层和生物标志物识别的组合协作聚类
- 批准号:
1812699 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant