III: Small: Collaborative Research: Combinatorial Collaborative Clustering for Simultaneous Patient Stratification and Biomarker Identification
III:小型:协作研究:用于同时进行患者分层和生物标志物识别的组合协作聚类
基本信息
- 批准号:1812699
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern high-throughput sequencing (HTS) technologies produce rich high-dimensional biomedical data. When studying complex, dynamic, stochastic, and heterogeneous life and disease systems, the dimensionality (number of features) of samples is typically much higher than the number of samples in HTS data. Such HTS data, while imposing significant statistical and computational challenges, bring unique opportunities for collaborative research to translate them to clinical precision medicine. This project will develop novel Bayesian methods and computational tools for combinatorial collaborative clustering targeting at two fundamental biomedical applications: tumor stratification and predictive biomarker identification. Compared to existing black-box algorithms for tumor stratification and biomarker identification, the proposed Bayesian combinatorial collaborative clustering framework enables simultaneous tumor stratification and biomarker identification for specific tumor subtypes, so that mechanistic understanding of heterogeneity of complex diseases can be obtained. The captured interrelationships between molecular profile patterns and disease subtypes may provide deep insights into disease cellular mechanisms and have the potential of developing personalized disease prognosis and therapeutic strategies. The interdisciplinary nature of this project, together with the planned curriculum development and outreach activities, will provide excellent training opportunities for both undergraduate and graduate students, preparing them with the quantitative skills in biomedical research with unprecedented big biomedical data.The core of this project is the theoretic and computational foundation of a novel Bayesian statistical framework to translate existing large-scale publicly available biomedical datasets, such as TCGA (The Cancer Genome Atlas) and ICGC (International Cancer Genome Consortium), to precision (personalized) disease diagnosis and prognosis. A new class of binary and count data analysis models will be developed for Combinatorial Collaborative Clustering (CCC) based on modern HTS data to achieve reproducible and accurate tumor stratification and biomarker identification. Here "combinatorial' means that each cluster will be defined over a subset of features, which will be selected from all possible feature combinations, via novel combinatorial analysis; and "collaborative" means that each cluster is collaboratively defined by how its cluster members express their selected subset of features. First, rather than defining cluster centers and a distance metric to stratify patients based on all features, CCC simultaneously identifies cluster-specific features as biomarkers that show similar profile patterns when performing patient stratification. Hence, with the predictive likelihood of a sample under a patient cluster calculated over a small subset of features selected from tens of thousands of them, it alleviates "the curse of dimensionality" and substantially improves reproducibility. Second, it also enables natural integration of mixed-type HTS data by linking various types of data to latent counts. Finally, the proposed count modeling based inference algorithms only compute for non-zero elements and therefore lead to extremely efficient analytic methods for sparse matrices, often the case in HTS data. In addition to the theoretic and computational merit, CCC provides a flexible probabilistic computational framework to identify and characterize tumor subtypes or subclones, which leads to more effective personalized prognosis and therapeutic design. The proposed CCC methods will be first evaluated on the TCGA and ICGC data, and then be applied to the collaborative research with the principal investigator's ongoing biomedical collaborators on cancer and immunological disease studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代高通量测序(HTS)技术产生了丰富的高维生物医学数据。当研究复杂的、动态的、随机的和异质的生命和疾病系统时,样本的维度(特征的数量)通常比HTS数据中的样本的数量高得多。这些HTS数据在带来重大统计和计算挑战的同时,也为合作研究带来了独特的机会,将其转化为临床精准医学。该项目将开发新的贝叶斯方法和计算工具,用于针对两个基本生物医学应用的组合协作聚类:肿瘤分层和预测生物标志物识别。与现有的肿瘤分层和生物标志物识别的黑盒算法相比,所提出的贝叶斯组合协同聚类框架能够同时对特定肿瘤亚型进行肿瘤分层和生物标志物识别,从而可以获得对复杂疾病异质性的机制理解。捕获的分子谱模式和疾病亚型之间的相互关系可以提供对疾病细胞机制的深入了解,并具有开发个性化疾病预后和治疗策略的潜力。该项目的跨学科性质,加上计划的课程编制和推广活动,将为本科生和研究生提供极好的培训机会,该项目的核心是一个新的贝叶斯统计框架的理论和计算基础,以翻译现有的大型生物医学数据,扩展公开可用的生物医学数据集,如TCGA(癌症基因组图谱)和ICGC(国际癌症基因组联盟),以精确(个性化)疾病诊断和预后。将基于现代HTS数据为组合协作聚类(CCC)开发一类新的二进制和计数数据分析模型,以实现可重现和准确的肿瘤分层和生物标志物识别。这里,“组合”意味着每个聚类将被定义在一个特征子集上,该特征子集将经由新颖的组合分析从所有可能的特征组合中选择;并且“协作”意味着每个聚类通过其聚类成员如何表达其所选择的特征子集来协作地定义。首先,CCC不是定义聚类中心和距离度量来基于所有特征对患者进行分层,而是同时将聚类特异性特征识别为在执行患者分层时显示相似轮廓模式的生物标志物。因此,通过在从数万个特征中选择的一小部分特征上计算的患者聚类下的样本的预测可能性,它消除了“维数灾难”并大大提高了再现性。其次,它还通过将各种类型的数据链接到潜在计数来实现混合类型HTS数据的自然集成。最后,所提出的基于计数建模的推理算法仅计算非零元素,因此导致稀疏矩阵的非常有效的分析方法,通常是HTS数据的情况。除了理论和计算优点之外,CCC还提供了一个灵活的概率计算框架来识别和表征肿瘤亚型或亚克隆,这导致更有效的个性化预后和治疗设计。建议的CCC方法将首先在TCGA和ICGC数据上进行评估,然后应用于与主要研究者正在进行的癌症和免疫疾病研究的生物医学合作者的合作研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(47)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:A. Dimitriev;Mingyuan Zhou
- 通讯作者:A. Dimitriev;Mingyuan Zhou
Dadaneh, Siamak Zamani, et al. "Pairwise supervised hashing with Bernoulli variational auto-encoder and self-control gradient estimator
达达内 (Dadaneh)、西亚马克·扎马尼 (Siamak Zamani) 等人。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Dadaneh, S.Z.
- 通讯作者:Dadaneh, S.Z.
Variational Autoencoders for Sparse and Overdispersed Discrete Data
- DOI:
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:He Zhao;Piyush Rai;Lan Du;Wray L. Buntine;Mingyuan Zhou
- 通讯作者:He Zhao;Piyush Rai;Lan Du;Wray L. Buntine;Mingyuan Zhou
ALLSH: Active Learning Guided by Local Sensitivity and Hardness
ALLSH:以局部敏感性和硬度为指导的主动学习
- DOI:10.18653/v1/2022.findings-naacl.99
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, S.;Gong, C.;Liu, X.;He, P.;Chen, W.;Zhou, M.
- 通讯作者:Zhou, M.
Convex Polytope Trees
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Mohammadreza Armandpour;Mingyuan Zhou
- 通讯作者:Mohammadreza Armandpour;Mingyuan Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingyuan Zhou其他文献
Augmentable Gamma Belief Networks
可增强伽玛信念网络
- DOI:
- 发表时间:
2015-12 - 期刊:
- 影响因子:6
- 作者:
Mingyuan Zhou;Yulai Cong;Bo Chen - 通讯作者:
Bo Chen
Multimodal Weibull Variational Autoencoder for Jointly Modeling Image-Text Data
用于联合建模图像文本数据的多模态威布尔变分自动编码器
- DOI:
10.1109/tcyb.2021.3070881 - 发表时间:
2021-04 - 期刊:
- 影响因子:11.8
- 作者:
Chaojie Wang;Bo Chen;Sucheng Xiao;Zhengjue Wang;Hao Zhang;Penghui Wang;Ning Han;Mingyuan Zhou - 通讯作者:
Mingyuan Zhou
Production of furfural from xylose and hemicelluloses using tin-loaded sulfonated diatomite as solid acid catalyst in biphasic system
- DOI:
10.1016/j.biteb.2019.03.001 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Qingqing Jia;Xingning Teng;Senshen Yu;Zhihao Si;Guozhen Li;Mingyuan Zhou;Di Cai;Peiyong Qin;Biqiang Chen - 通讯作者:
Biqiang Chen
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
神经信息处理系统的进展 25:2012 年第 26 届神经信息处理系统年会,NIPS 2012
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mingyuan Zhou;L. Carin - 通讯作者:
L. Carin
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
具有可扩展混合贝叶斯推理的深度自动编码主题模型
- DOI:
10.1109/tpami.2020.3003660 - 发表时间:
2021 - 期刊:
- 影响因子:23.6
- 作者:
Hao Zhang;Bo Chen;Yulai Cong;D;an Guo;Hongwei Liu;Mingyuan Zhou - 通讯作者:
Mingyuan Zhou
Mingyuan Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingyuan Zhou', 18)}}的其他基金
Collaborative Research: III: Medium: Conditional Transport: Theory, Methods, Computation, and Applications
合作研究:III:媒介:条件传输:理论、方法、计算和应用
- 批准号:
2212418 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324769 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant