Collaborative Research: CIF: Medium: Understanding Robustness via Parsimonious Structures.
合作研究:CIF:中:通过简约结构了解鲁棒性。
基本信息
- 批准号:2212457
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern machine learning methods, and in particular deep networks have led to significant advances in several areas of science and engineering, including computer vision, speech and language processing, robotics, and beyond. At the same time, deep networks have been shown to be extremely sensitive to small adversarial perturbations to their inputs or training set. Because of this, models based on deep networks can exhibit significant vulnerabilities to imperceptible attacks. Recent work has proposed many ad-hoc methods for defending deep networks against such adversarial attacks, which have been subsequently broken by stronger attacks. While stronger and provably correct defenses continue to be developed, a mathematical framework for understanding why deep networks can be fooled into making wrong predictions and how to design and train networks with guarantees of robustness remains elusive. This project aims to answer the following questions: Is it possible to detect when a network has been attacked or when a dataset has been poisoned and reconstruct the original uncorrupted data? If yes, under what conditions on the distribution of the data and the network architecture? If not, how can network architectures and learning algorithms be designed that yield provably robust networks? This project has the following research goals (1) derive conditions on the input data and the attack type under which one can determine the attack type and reconstruct the original signal; (2) study the fundamental limits of robustness guarantees against poisoning attacks, especially in the asymptotic regime where the adversary can poison a constant fraction of the training samples; (3) study the robustness of non-linear predictors that exploit sparsity and local stability of the computed representations allowing for provable guarantees for robustness; (4) study the role of symmetry as a form of parsimony and show that it increases the adversarial robustness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代机器学习方法,特别是深度网络,在科学和工程的几个领域取得了重大进展,包括计算机视觉、语音和语言处理、机器人等。同时,深度网络已被证明对其输入或训练集的小的对抗性扰动极为敏感。正因为如此,基于深度网络的模型可能会对难以察觉的攻击表现出重大漏洞。最近的研究提出了许多特别的方法来保护深度网络免受这种对抗性攻击,这些攻击随后被更强的攻击所破坏。虽然更强大且可证明正确的防御措施仍在继续发展,但理解深度网络为什么会被愚弄而做出错误预测以及如何设计和训练具有鲁棒性保证的网络的数学框架仍然难以捉摸。该项目旨在回答以下问题:是否有可能检测网络何时受到攻击或数据集何时被毒害并重建原始未损坏的数据?如果是,数据的分布和网络架构是什么情况?如果不是,如何设计网络架构和学习算法来产生可证明的健壮网络?本项目的研究目标如下:(1)推导出输入数据和攻击类型的条件,在此条件下可以确定攻击类型并重构原始信号;(2)研究了针对中毒攻击的鲁棒性保证的基本限制,特别是在对手可以毒害一定比例的训练样本的渐近状态下;(3)研究非线性预测器的鲁棒性,利用计算表示的稀疏性和局部稳定性,允许鲁棒性的可证明保证;(4)研究了对称作为一种简约形式的作用,并表明它增加了对抗鲁棒性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved techniques for deterministic l2 robustness
- DOI:10.48550/arxiv.2211.08453
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Sahil Singla;S. Feizi
- 通讯作者:Sahil Singla;S. Feizi
Lethal Dose Conjecture on Data Poisoning
- DOI:10.48550/arxiv.2208.03309
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Wenxiao Wang;Alexander Levine;S. Feizi
- 通讯作者:Wenxiao Wang;Alexander Levine;S. Feizi
Provable Robustness against Wasserstein Distribution Shifts via Input Randomization
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Aounon Kumar;Alexander Levine;T. Goldstein;S. Feizi
- 通讯作者:Aounon Kumar;Alexander Levine;T. Goldstein;S. Feizi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soledad Villar其他文献
Manifold optimization for k-means clustering
k 均值聚类的流形优化
- DOI:
10.1109/sampta.2017.8024388 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Timothy Carson;D. Mixon;Soledad Villar - 通讯作者:
Soledad Villar
A polynomial-time relaxation of the Gromov-Hausdorff distance
Gromov-Hausdorff 距离的多项式时间松弛
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Soledad Villar;A. Bandeira;A. Blumberg;Rachel A. Ward - 通讯作者:
Rachel A. Ward
MarkerMap: nonlinear marker selection for single-cell studies
MarkerMap:单细胞研究的非线性标记选择
- DOI:
10.1038/s41540-024-00339-3 - 发表时间:
2022 - 期刊:
- 影响因子:4
- 作者:
Nabeel Sarwar;Wilson Gregory;George A. Kevrekidis;Soledad Villar;Bianca Dumitrascu - 通讯作者:
Bianca Dumitrascu
Shuffled linear regression through graduated convex relaxation
通过分级凸松弛进行洗牌线性回归
- DOI:
10.48550/arxiv.2209.15608 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Efe Onaran;Soledad Villar - 通讯作者:
Soledad Villar
Three proofs of the Benedetto-Fickus theorem
Benedetto-Fickus 定理的三个证明
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
D. Mixon;Tom Needham;C. Shonkwiler;Soledad Villar - 通讯作者:
Soledad Villar
Soledad Villar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soledad Villar', 18)}}的其他基金
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Optimization Techniques for Geometrizing Real-World Data
现实世界数据几何化的优化技术
- 批准号:
2044349 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Optimization Techniques for Geometrizing Real-World Data
现实世界数据几何化的优化技术
- 批准号:
1913134 - 财政年份:2019
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant