FET: Medium: Neural network computation and learning in well-mixed and spatially-organized molecular systems

FET:中:混合良好且空间组织的分子系统中的神经网络计算和学习

基本信息

  • 批准号:
    2212546
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

The principles of neural computation, developed mostly over the past 50 years, have led to profoundly improved understanding of how brains process information and have served as the foundation for modern machine learning techniques. Only recently has it begun to be appreciated the extent to which these principles of neural computation apply more broadly and can be found operating within non-neural systems. In particular, the implications and potential of neural computing principles for designing advanced synthetic molecular systems are only beginning to be explored. Key principles include the power of high-dimensional pattern recognition using linear threshold units and winner-take-all competition, learning from experience to sculpt network connection strengths, the generation of complex patterns from the resonance of network dynamics, and the interplay between spatial structure and computing capabilities. Molecular programming using DNA nanotechnology now has sufficiently developed methods to design systems that explore and exploit these neural computing principles. This research will pioneer three new types of DNA neural networks: those capable of unsupervised learning of complex patterns in their environment, those capable of complex spatial pattern formation as reaction-diffusion systems, and those capable of exploiting the molecular-scale spatial organization of DNA nanostructures to perform more efficient computation in certain regimes of operation. In the long term, the incorporation of neural computation principles into future molecular systems will open doors to new applications ranging from biomedicine to materials science. In the medium term, an important impact of this project will be the future careers of the postdocs and graduate students who will benefit from the research experience and mentoring, whether they move on to academia, industry, or entrepreneurship. In the short term, the researchers will incorporate their scientific understanding into online software tools, continue to integrate research with education, provide undergraduates with mentored summer research, enhance the interdisciplinary research environment, and involve more women in science. They will also increase public engagement with science by presenting at public events, interviewing for popular science magazines, and creating artworks to illustrate their research.Specific research goals for the development of the three new types of DNA neural networks are as follows. First, learning is arguably the most desirable property of synthetic molecular circuits. This project builds on the researchers’ current work demonstrating supervised learning and expands it to the broader category of unsupervised learning. A limitation of supervised learning is that a “teacher” must provide training examples that indicate what should be learned. Unsupervised learning addresses this limitation by exposing the molecular circuits to only what they encounter but not how they should respond; this new capability would be necessary for molecular robotic systems that operate autonomously, as cells do, within a molecular milieu. Second, reaction-diffusion pattern formation has been studied since Alan Turing’s seminal work on morphogenesis, both for its relevance to biological patterning and as an intrinsic physical mechanism of self-organization. However, the complexity of reaction-diffusion patterns has been limited. The researchers will leverage recent breakthroughs in deep learning techniques to design complex reaction-diffusion networks by example. They will use the differentiable programming approach, combined with the recent advances in the synthesis of large DNA neural networks and reliable DNA hydrogels as a spatial substrate for reaction-diffusion experiments. Finally, the researchers will perform a theoretical study that applies their expertise in DNA origami tiles and surface-localized chemical reaction networks to introduce a novel computing architecture for DNA neural networks. This architecture provides a new trade-off between design complexity and molecular operation that may scale better than prior approaches as the network size increases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经计算的原理主要是在过去50年中发展起来的,它深刻地提高了人们对大脑如何处理信息的理解,并成为现代机器学习技术的基础。 直到最近,人们才开始意识到这些神经计算原理的应用范围更广,并且可以在非神经系统中运行。 特别是,神经计算原理对设计先进合成分子系统的影响和潜力才刚刚开始探索。关键原则包括使用线性阈值单元和赢家通吃竞争的高维模式识别的力量,从经验中学习以塑造网络连接优势,从网络动力学的共振中生成复杂模式,以及空间结构和计算能力之间的相互作用。使用DNA纳米技术的分子编程现在已经有了充分发展的方法来设计探索和利用这些神经计算原理的系统。这项研究将开创三种新型的DNA神经网络:那些能够在其环境中无监督学习复杂模式的网络,那些能够作为反应扩散系统形成复杂空间模式的网络,以及那些能够利用DNA纳米结构的分子尺度空间组织在某些操作制度中执行更有效计算的网络。从长远来看,将神经计算原理纳入未来的分子系统将为从生物医学到材料科学的新应用打开大门。从中期来看,该项目的一个重要影响将是博士后和研究生的未来职业,他们将从研究经验和指导中受益,无论他们是进入学术界,工业界还是创业。在短期内,研究人员将把他们的科学理解纳入在线软件工具,继续将研究与教育相结合,为本科生提供指导性的暑期研究,加强跨学科研究环境,并让更多的女性参与科学。他们还将通过在公共活动中发表演讲、接受科普杂志采访以及创作艺术品来展示他们的研究,以增加公众对科学的参与。开发三种新型DNA神经网络的具体研究目标如下。首先,学习可以说是合成分子电路最理想的特性。该项目建立在研究人员目前展示监督学习的工作基础上,并将其扩展到更广泛的无监督学习类别。监督学习的一个局限性是,“教师”必须提供训练示例,以指示应该学习什么。无监督学习解决了这一局限性,它只让分子电路暴露于它们遇到的东西,而不是它们应该如何反应;这种新能力对于像细胞一样在分子环境中自主运行的分子机器人系统是必要的。第二,自艾伦·图灵(Alan Turing)对形态发生的开创性工作以来,反应扩散模式的形成一直被研究,这既是因为它与生物模式的相关性,也是自组织的内在物理机制。然而,反应扩散模式的复杂性受到限制。研究人员将利用深度学习技术的最新突破来设计复杂的反应扩散网络。他们将使用可微编程方法,结合大型DNA神经网络合成的最新进展和可靠的DNA水凝胶作为反应扩散实验的空间基质。最后,研究人员将进行一项理论研究,运用他们在DNA折纸瓦片和表面局部化化学反应网络方面的专业知识,为DNA神经网络引入一种新的计算架构。该架构在设计复杂性和分子操作之间提供了一种新的权衡,随着网络规模的增加,这种权衡可能比以前的方法更好地扩展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lulu Qian其他文献

74 Creating combinatorial patterns with DNA origami arrays
74 使用 DNA 折纸阵列创建组合图案
Effect of keystone on coded aperture spectral imaging
梯形校正对编码孔径光谱成像的影响
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lulu Qian;Qun;Min Huang;Qisheng Cai;Bin Xiangli
  • 通讯作者:
    Bin Xiangli
Dynamic Modeling of a One-stage Gear System by Finite Element Method and the Dynamic Analysis in High Speed
Conductive MXene ultrafiltration membrane for improved antifouling ability and water quality under electrochemical assistance
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Lulu Qian;Chengyu Yuan;Xu Wang;Haiguang Zhang;Lei Du;Gaoliang Wei;Shuo Chen
  • 通讯作者:
    Shuo Chen
Understanding the Dynamic Relationships among Interpersonal Personality Characteristics, Loneliness, and Smart-Phone Use: Evidence from Experience Sampling
了解人际人格特征、孤独感和智能手机使用之间的动态关系:来自经验抽样的证据

Lulu Qian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lulu Qian', 18)}}的其他基金

FET: Small: DNA-based Neural Networks That Learn From Their Environment
FET:小型:基于 DNA 的神经网络,可从环境中学习
  • 批准号:
    1908643
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
AF: SHF: Small: Algorithmic and Architectural Foundation for Next-Generation Collective DNA Robots
AF:SHF:小型:下一代集体 DNA 机器人的算法和架构基础
  • 批准号:
    1813550
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Student travel support for BIRS workshop on programming with chemical reaction networks
BIRS 化学反应网络编程研讨会的学生旅行支持
  • 批准号:
    1442454
  • 财政年份:
    2014
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CAREER: Robust and systematic molecular engineering with synthetic DNA neural networks and collective molecular robots
职业:利用合成 DNA 神经网络和集体分子机器人进行稳健且系统的分子工程
  • 批准号:
    1351081
  • 财政年份:
    2014
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311468
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311087
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311086
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311469
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了