Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
基本信息
- 批准号:2311087
- 负责人:
- 金额:$ 19.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep Neural Networks (DNN) enabled Cyber-Physical Systems (CPS) hold great promise for revolutionizing many industries, such as drones and self-driving cars. However, the current generation of DNN cannot provide analyzable behaviors and verifiable properties that are necessary for safety assurance. This critical flaw in purely data-driven DNN sometimes leads to catastrophic consequences, such as vehicle crashes linked to self-driving and driver-assistance technologies. On the other hand, physics-model-based engineering methods provide analyzable behaviors and verifiable properties, but do not match the performance of DNN systems. These considerations motivate the work in this project which aims at physics-model-based neural networks (NN) redesign, yielding HyPhy-DNN: a hybrid self-correcting physics-enhanced DNN framework. HyPhy-DNN will provide the performance of DNNs and the analyzability and verifiability of physical models, thus providing a foundation for verifiably safe self-driving cars, drones, and other CPS systems. Moreover, the HyPhy-DNN will fundamentally advance the integration of deep learning and robust control to enable safety- and time-critical CPS to safely operate with high performance in unforeseen and dynamic environments.The HyPhy-DNN will make three innovations in redesigning NN architecture: (i) Physics augmentations of NN inputs for directly capturing hard-to-learn physical quantities and embedding Taylor series; (ii) Physics-guided neural network editing, such as removing links between independent physics variables or fixed weights on links between certain physics variables to maintain the known physics identity such as in conservation laws; and (iii) Time-frequency-representation filtering-based activations for filtering out noise having dynamic frequency distribution. The novel architectural redesigns will empower the HyPhy-DNN with four targeted capabilities: 1) controllable and provable model accuracy; 2) maximum avoidance of spurious correlations; 3) strict compliance with physics knowledge; and 4) automatic correction of unsafe control commands. Finally, the safety certification of any DNN will be a long-term challenge. Hence, the HyPhy-DNN shall have a simple but verified backup controller for guaranteeing safe and stable operation in dynamic and unforeseen environments. To achieve this, the research team will integrate HyPhy-DNN with an adaptive-model-adaptive-control (AMAC) framework, the core novelty of which lies in fast and accurate nonlinear model learning via sparse regression for model-based robust control. The HyPhy-DNN and AMAC are complementary and will be interactive at different scales of system performance and functionalities during the safety-status-cycle, supported by the Simplex software architecture, a well-known real-time software technology that tolerates faults and allows online control system upgrades.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)支持的网络物理系统(CPS)为许多行业带来了巨大的变革,例如无人机和自动驾驶汽车。然而,当前一代DNN无法提供安全保证所需的可分析行为和可验证属性。纯粹数据驱动的DNN中的这一关键缺陷有时会导致灾难性的后果,例如与自动驾驶和驾驶员辅助技术相关的车辆碰撞。另一方面,基于物理模型的工程方法提供了可分析的行为和可验证的属性,但与DNN系统的性能不匹配。这些考虑激发了该项目的工作,该项目旨在基于物理模型的神经网络(NN)重新设计,产生HyPhy-DNN:一个混合自校正物理增强DNN框架。HyPhy-DNN将提供DNN的性能以及物理模型的可分析性和可验证性,从而为可验证安全的自动驾驶汽车,无人机和其他CPS系统提供基础。 此外,HyPhy-DNN将从根本上推进深度学习和鲁棒控制的集成,使安全和时间关键型CPS能够在不可预见和动态环境中安全地高性能运行。HyPhy-DNN将在重新设计神经网络架构方面进行三项创新:(i)神经网络输入的物理增强,用于直接捕获难以学习的物理量并嵌入泰勒级数;(ii)物理引导的神经网络编辑,例如去除独立物理变量之间的链接或某些物理变量之间的链接上的固定权重,以保持已知的物理特性,例如守恒定律;以及(iii)基于时频表示滤波的激活,用于滤除具有动态频率分布的噪声。新的架构重新设计将赋予HyPhy-DNN四个目标能力:1)可控和可证明的模型精度; 2)最大限度地避免虚假相关; 3)严格遵守物理知识; 4)自动纠正不安全的控制命令。最后,任何DNN的安全认证都将是一个长期的挑战。因此,HyPhy-DNN应该有一个简单但经过验证的备用控制器,以确保在动态和不可预见的环境中安全稳定地运行。为了实现这一目标,研究团队将HyPhy-DNN与自适应模型自适应控制(AMAC)框架相结合,其核心新奇在于通过稀疏回归进行快速准确的非线性模型学习,以实现基于模型的鲁棒控制。HyPhy-DNN和AMAC是互补的,在Simplex软件架构的支持下,在安全状态周期期间,它们将在不同规模的系统性能和功能上进行交互,一个众所周知的真实的-该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估被认为值得支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weisong Shi其他文献
Using confidence interval to summarize the evaluating results of DSM systems
利用置信区间总结DSM系统的评估结果
- DOI:
10.1007/bf02951929 - 发表时间:
2000 - 期刊:
- 影响因子:1.9
- 作者:
Weisong Shi;Zhimin Tang;Jinsong Shi - 通讯作者:
Jinsong Shi
Low power cache architectures with hybrid approach of filtering unnecessary way accesses
低功耗缓存架构,采用混合方法过滤不必要的访问方式
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Lingjun Fan;Shinan Wang;Yasong Zheng;Weisong Shi;Dongrui Fan - 通讯作者:
Dongrui Fan
Using Con(cid:12)dence Interval to Summarize the Evaluation Results: A Case Study(cid:3)
使用置信区间(cid:12)总结评估结果:案例研究(cid:3)
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Weisong Shi;Zhimin Tang - 通讯作者:
Zhimin Tang
Availability Modeling and Analysis of Autonomous In-Door WSNs
自主室内 WSN 的可用性建模和分析
- DOI:
10.1109/mobhoc.2007.4428654 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Safwan Al;Weisong Shi - 通讯作者:
Weisong Shi
Peer-to-peer Web caching: hype or reality?
点对点 Web 缓存:炒作还是现实?
- DOI:
10.1109/icpads.2004.63 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Yonggen Mao;Zhaomin Zhu;Weisong Shi - 通讯作者:
Weisong Shi
Weisong Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weisong Shi', 18)}}的其他基金
SaTC: CORE: Small: Collaborative: Hardware-assisted Plausibly Deniable System for Mobile Devices
SaTC:核心:小型:协作:用于移动设备的硬件辅助合理可否认系统
- 批准号:
2313139 - 财政年份:2022
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
IUCRC Planning Grant Wayne State University: Center for Electric, Connected and Autonomous Technologies for Mobility (eCAT)
IUCRC 规划格兰特韦恩州立大学:电动、互联和自主移动技术中心 (eCAT)
- 批准号:
2113817 - 财政年份:2021
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
RAPID: CORPUS: An Edge Intelligence-Assisted Multi-Granularity COVID-19 Risk Predication and Update System
RAPID:CORPUS:边缘智能辅助的多粒度 COVID-19 风险预测和更新系统
- 批准号:
2027251 - 财政年份:2020
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Hardware-assisted Plausibly Deniable System for Mobile Devices
SaTC:核心:小型:协作:用于移动设备的硬件辅助合理可否认系统
- 批准号:
1928331 - 财政年份:2019
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
NSF Computer Systems Research (CSR) Program 2018 PI Meeting
NSF 计算机系统研究 (CSR) 计划 2018 PI 会议
- 批准号:
1836629 - 财政年份:2018
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
OpenEdge: Toward Open and Transparent Edge Computing and Its Application in Public Safety
OpenEdge:走向开放透明的边缘计算及其在公共安全中的应用
- 批准号:
1741635 - 财政年份:2017
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Wizard: Exploiting Disk Performance Signatures for Cost-Effective Management of Large-Scale Storage Systems
CSR:中:协作研究:向导:利用磁盘性能签名实现大规模存储系统的经济高效管理
- 批准号:
1563728 - 财政年份:2016
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
EAGER: Fine-Grained Software Power Prediction and Its Application on Power Management of Heterogeneous Multicore Systems
EAGER:细粒度软件功耗预测及其在异构多核系统功耗管理中的应用
- 批准号:
1561216 - 财政年份:2016
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
NSF Workshop on Grand Challenges in Computing on the Edge (COME)
NSF 边缘计算重大挑战研讨会 (COME)
- 批准号:
1624177 - 财政年份:2016
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
NeTS-NOSS: Consistency Model Driven Deceptive Data Detection and Filtering in Wireless Sensor Networks
NeTS-NOSS:无线传感器网络中一致性模型驱动的欺骗性数据检测和过滤
- 批准号:
0721456 - 财政年份:2007
- 资助金额:
$ 19.7万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
- 批准号:
2414176 - 财政年份:2023
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 19.7万 - 项目类别:
Standard Grant