Development and function of the Xenopus tadpole retinotegmental projection
非洲爪蟾蝌蚪视网膜被盖投射的发育和功能
基本信息
- 批准号:2212591
- 负责人:
- 金额:$ 58.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
New-born neurons (brain cells) have the amazing ability to self-assemble into circuits – groups of functionally connected neurons. These circuits give rise to our perceptions, thoughts, emotions, and behaviors. Understanding how neurons self-assemble into circuits is an important aim in the field of neuroscience, and it is the overall aim of this project. This would be difficult to study in mammals with their billions of neurons, complex circuits, and variable behaviors. This project studies a more experimentally tractable circuit: the developing visual system of the African Clawed Frog (Xenopus) tadpole. Previous studies on the tadpole visual system have focused on the retinotectal projection, a circuit consisting of the synapse between the retinal ganglion cells (RGCs) in the eye and the optic tectum, a major visual processing center on the dorsal (top) surface of the amphibian midbrain. In preparatory work for the current project, we characterized a second projection between the retinal ganglion cells from the Xenopus eye and the ventral (bottom) midbrain called the retinotegmental projection. Preliminary data indicate that these two projections are built differently and carry out different functions within the visual system. The goal of this project is to provide a detailed description of the development and function of the retinotegmental projection. Overall, this work will contribute important new insights about how neural circuits form and carry out specific functions. Educational and broader impact activities for this project include teaching a “Vision and Art” course for non-science undergraduates, and an upper-level developmental science lab course in which students design and carry out experiments to determine how environmental factors impact the developing Xenopus embryo. How neurons self-assemble into circuits that give rise to behaviors is a fundamental question in neuroscience. For decades, the Xenopus tadpole retinotectal projection – the synapse between the retinal ganglion cells (RGCs) in the eye and the midbrain optic tectum – has served as a popular model to study this question. But the retinotectal projection is only one of several components of the vertebrate visual system. Our recent work shows that color-dependent phototaxis in tadpoles does not require the optic tectum, but does require the tegmentum, a region of the midbrain that lies ventral to the optic tectum. We also found several color-tuned neuronal populations in the tegmentum. Through additional anatomical and electrophysiological studies, we identified a retinotegmental projection, a direct projection from the RGCs to the midbrain tegmental neurons. This projection appears to lack the developmental plasticity displayed by the retinotectal projection, suggesting a more hard-wired circuit. A highly conserved retinotegmental projection, termed the accessory optic system (AOS), has been described across a wide range of adult vertebrates, from frogs to humans. It is associated with optomotor and optokinetic responses – reflexive body and eye movements, respectively, that stabilize vision as the organism moves through space. It is likely that the retinotegmental projection we are studying in the tadpole is, at least in part, the AOS. Through a combination of electrophysiology-based approaches and circuit tracing, this work will provide a detailed description of the development and differentiation of the Xenopus tadpole retinotegmental projection and its role in processing visual stimuli.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新生的神经元(脑细胞)具有惊人的自我组装成电路的能力--一组功能相连的神经元。这些回路产生了我们的感知、思想、情绪和行为。了解神经元如何自组装成电路是神经科学领域的一个重要目标,也是本项目的总体目标。这很难在哺乳动物身上进行研究,因为它们有数十亿个神经元,复杂的电路和不同的行为。这个项目研究了一种更易于实验处理的回路:非洲爪蛙(非洲爪蛙)蝌蚪的视觉系统发育。以前对蝌蚪视觉系统的研究主要集中在视网膜顶盖投射,这是一个由眼睛中的视网膜神经节细胞(RGC)和视顶盖之间的突触组成的回路,视顶盖是两栖类中脑背(顶)面的一个主要视觉处理中心。在当前项目的准备工作中,我们描述了来自非洲爪哇眼睛的视网膜神经节细胞与腹侧(底部)中脑之间的第二个投影,称为视网膜被盖投影。初步数据表明,这两个投影的构造不同,在视觉系统中执行不同的功能。本项目的目标是提供视网膜被盖投影的发展和功能的详细描述。总体而言,这项工作将有助于对神经电路如何形成和执行特定功能提供重要的新见解。该项目的教育和更广泛的影响活动包括为非理科本科生教授“视觉与艺术”课程,以及高级发展科学实验室课程,在该课程中,学生设计和进行实验,以确定环境因素如何影响非洲爪哇胚胎的发育。神经元如何自我组装成产生行为的回路是神经科学中的一个基本问题。几十年来,非洲爪哇蝌蚪视网膜顶盖投射-眼睛中的视网膜神经节细胞(RGC)和中脑视顶盖之间的突触-一直是研究这一问题的流行模型。但视网膜顶盖投射只是脊椎动物视觉系统的几个组成部分之一。我们最近的工作表明,蝌蚪的颜色依赖趋光性不需要视顶盖,但需要被盖,中脑的一个区域位于视顶盖的腹侧。我们还在被盖中发现了几个颜色可调的神经元群体。通过更多的解剖学和电生理学研究,我们确定了视网膜被盖投射,即从视网膜节细胞到中脑被盖神经元的直接投射。这种投射似乎缺乏视网膜顶盖投射所显示的发育可塑性,这表明存在更多的硬连接回路。一种高度保守的视网膜被盖投射,被称为辅助视觉系统(AOS),已在从青蛙到人类的各种成年脊椎动物中被描述。它与视觉运动和视动反应有关--分别是反射性的身体和眼睛的运动,当有机体在空间中移动时,这些运动可以稳定视力。很可能,我们正在研究的蝌蚪视网膜被盖投射,至少部分是AOS。通过基于电生理学的方法和电路追踪的结合,这项工作将详细描述非洲爪哇蝌蚪视网膜被盖投影的发展和分化及其在处理视觉刺激中的作用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kara Pratt其他文献
Kara Pratt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
- 批准号:82371651
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
- 批准号:82371373
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PROCR信号通路介导的血管新生在卵巢组织移植中的作用及机制研究
- 批准号:82371726
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
GASP-1通过Myostatin信号通路调控颏舌肌功能的作用及机制研究
- 批准号:82371131
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82370865
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
双硫仑结合并抑制谷氨酸脱氢酶1活性调节Th17/Treg细胞平衡的作用与机制探究
- 批准号:82371755
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
犬尿氨酸酶KYNU参与非酒精性脂肪肝进展为肝纤维化的作用和机制研究
- 批准号:82370874
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Extracellular regulation of Xenopus development
非洲爪蟾发育的细胞外调节
- 批准号:
10462530 - 财政年份:2018
- 资助金额:
$ 58.21万 - 项目类别:
Extracellular regulation of Xenopus development
非洲爪蟾发育的细胞外调节
- 批准号:
10237948 - 财政年份:2018
- 资助金额:
$ 58.21万 - 项目类别:
Experience-dependent development of neural circuits in the Xenopus visual system
非洲爪蟾视觉系统中神经回路的依赖于经验的发育
- 批准号:
8339876 - 财政年份:2011
- 资助金额:
$ 58.21万 - 项目类别:
Genetic Analysis of Inner Ear Development in Xenopus tropicalis
热带爪蟾内耳发育的遗传分析
- 批准号:
8893938 - 财政年份:2011
- 资助金额:
$ 58.21万 - 项目类别:
Experience-dependent development of neural circuits in the Xenopus visual system
非洲爪蟾视觉系统中神经回路的依赖于经验的发育
- 批准号:
8125971 - 财政年份:2011
- 资助金额:
$ 58.21万 - 项目类别:
Genetic Analysis of Inner Ear Development in Xenopus tropicalis
热带爪蟾内耳发育的遗传分析
- 批准号:
8509655 - 财政年份:2011
- 资助金额:
$ 58.21万 - 项目类别:
Genetic Analysis of Inner Ear Development in Xenopus tropicalis
热带爪蟾内耳发育的遗传分析
- 批准号:
8708822 - 财政年份:2011
- 资助金额:
$ 58.21万 - 项目类别:
Genetic Analysis of Inner Ear Development in Xenopus tropicalis
热带爪蟾内耳发育的遗传分析
- 批准号:
8307735 - 财政年份:2011
- 资助金额:
$ 58.21万 - 项目类别:
Experience-dependent development of neural circuits in the Xenopus visual system
非洲爪蟾视觉系统中神经回路的依赖于经验的发育
- 批准号:
8403884 - 财政年份:2011
- 资助金额:
$ 58.21万 - 项目类别: