Induction of limb development in Xenopus
爪蟾肢体发育的诱导
基本信息
- 批准号:8911853
- 负责人:
- 金额:$ 7.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAnteriorAntlersAreaAttentionBackBasic ScienceBiochemicalBiochemical GeneticsBiochemical PathwayBiological ModelsBiophysicsCalculiCancerousCell ProliferationCellsCodeCommunitiesComplementComplexComputersCongenital AbnormalityCultured CellsDataDeerDetectionDevelopmentDiseaseEmbryoEpigenetic ProcessEyeFaceForelimbFoundationsGeneticGoalsGrowthHealthImageInjuryInterventionInvestigationIon ChannelIon PumpsIonsLaboratoriesLanguageLearningLeftLesionLifeLightLimb DevelopmentLimb structureLinkMalignant NeoplasmsMammalsMedicalMembrane PotentialsMethodsMicroscopeModelingMolecularMolecular BiologyMolecular GeneticsMonitorMorphogenesisMuscleNatural regenerationNeoplasmsNerveNeuronsNewtsOrganOrganismOutputPathway interactionsPatternPattern FormationPhysiologicalPilot ProjectsPlanariansProcessPropertyProteinsPumpRanaReagentRegenerative MedicineRegulationReporterResearchResistanceResolutionResourcesRoleSchemeShapesSignal TransductionSpecific qualifier valueSpinal CordStagingStem cellsStimulusSystemSystems BiologyTadpolesTailTechniquesTechnologyTestingTissuesTransgenic OrganismsTraumaWorkXenopusXenopus laevisappendagebasebioelectricitybiophysical propertiescell behaviorcell typeelectric fieldeye regenerationfascinateflexibilitygenetic analysisin vivoinnovationinsightinterestlimb injuryloss of functionmigrationneoplastic cellnovelnovel strategiesoptogeneticspressureprogramsquantumrepairedresponsesmall moleculetemporal measurementtoolvoltage
项目摘要
DESCRIPTION (provided by applicant): The orchestration of cell behavior during complex morphogenesis involves not only the well-studied biochemical pathways but also an important and fascinating biophysical system: the endogenous patterns of ion flows, transmembrane gradients, and electric fields produced by ion channels and pumps. Such bioelectrical signals are produced from all cells (not just nerve and muscle) and regulate cell proliferation, migration,
and differentiation. Bioelectrical gradients are crucial determinants of patterning in development,
regeneration, and resistance to neoplasm. Our laboratory has pioneered the development of novel techniques for the molecular-level characterization of bioelectrical signals and genetic gain- and loss-of-function approaches for their rational modulation in vivo. Over the last decade, we have uncovered several new roles for transmembrane potential gradients in stem cell regulation, left-right patterning, tail regeneration, eye induction, and planarian anterior-posterir polarity determination. Moreover, we have identified the molecular steps that transduce voltage changes into transcriptional responses, thus fleshing out the mechanistic links between physiological controls of growth and form and downstream genetic components that regulate cell behavior. Strong data now indicate that modulation of bioelectric properties of cells has the potential to revolutionize approaches in regenerative medicine of the face, eye, spinal cord, and limb, as well as detection and normalization of cancer. In this R03 project, we propose to surmount the biggest barrier facing this field today: the difficulty of changing and monitoring transmembrane potential in vivo with very high spatio-temporal resolution. Preliminary data indicate that misexpression of specific ion channels can induce whole, complete, functional forelimbs in frogs; this is a superb opportunity to understand this new type of developmental signaling. What is holding back the community from fully cracking the bioelectric code is a proof-of-concept application that allows spatial patterns of bioelectric gradients to be regulated in viv. Our basic idea is to move the technology of optogenetics, heretofore applied only to excitable cells (nerve and muscle), to all cell types for developmental regulation. We propose to: 1) produce transgenic frogs expressing voltage fluorescent reporter proteins, facilitating the investigation of bioelectrical properties in any organ/tissue of interest in vivo; 2) produce transgenic frogs expressing optogenetic constructs (Channelrhodopsin and Archeorhodopsin), allowing depolarization or hyperpolarization of cells of interest in vivo by means of patterned light exposure; and 3) use this technology to induce ectopic limbs in froglets by developing a mechanistic understanding of the voltage gradients specific to limb induction and morphogenesis. By creating powerful and widely-applicable resources and applying them to a problem of fundamental importance and biomedical relevance (limb damage), our work will provide a key proof-of-principle to stepping stone to advance the field of optogenetics, the regenerative medicine of the vertebrate limb, and the understanding of biophysical factors in development.
描述(由申请人提供):复杂形态发生期间细胞行为的协调不仅涉及充分研究的生化途径,而且涉及重要且迷人的生物物理系统:离子流的内源性模式、跨膜梯度以及由离子通道和泵产生的电场。这种生物电信号由所有细胞(不仅仅是神经和肌肉)产生,并调节细胞增殖,迁移,
和差异化。生物电梯度是发育模式的关键决定因素,
再生和抗肿瘤。我们的实验室率先开发了生物电信号分子水平表征的新技术,以及用于体内合理调制的遗传获得和功能丧失方法。在过去的十年中,我们已经发现了几个新的作用,跨膜电位梯度在干细胞调控,左右图案,尾巴再生,眼诱导,和Planarian前后极性的决定。此外,我们已经确定了将电压变化转化为转录反应的分子步骤,从而充实了生长和形态的生理控制与调节细胞行为的下游遗传成分之间的机制联系。强有力的数据表明,细胞生物电特性的调节有可能彻底改变面部、眼睛、脊髓和肢体再生医学的方法,以及癌症的检测和正常化。在这个R 03项目中,我们提出要克服当今该领域面临的最大障碍:以非常高的时空分辨率改变和监测体内跨膜电位的困难。初步数据表明,特定离子通道的错误表达可以诱导青蛙的完整,完整,功能性前肢;这是了解这种新型发育信号的绝佳机会。阻碍社区完全破解生物电密码的是一个概念验证应用程序,该应用程序允许在体内调节生物电梯度的空间模式。我们的基本想法是将光遗传学技术,迄今为止只应用于兴奋细胞(神经和肌肉),用于所有细胞类型的发育调控。我们建议:1)产生表达电压荧光报告蛋白的转基因青蛙,促进体内任何感兴趣器官/组织中生物电特性的研究; 2)产生表达光遗传学构建体的转基因青蛙(视紫红质和古视紫红质),允许通过图案化光暴露在体内对感兴趣的细胞进行去极化或超极化;和3)通过发展对肢体诱导和形态发生的特定电压梯度的机械理解,使用该技术在小蛙中诱导异位肢体。通过创建强大且广泛适用的资源并将其应用于具有根本重要性和生物医学相关性的问题(肢体损伤),我们的工作将为推进光遗传学领域,脊椎动物肢体再生医学以及对发育中生物物理因素的理解提供关键的原理证明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL LEVIN其他文献
MICHAEL LEVIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL LEVIN', 18)}}的其他基金
Automated Analysis of Learning and Memory for Neuro-Developmental Studies
用于神经发育研究的学习和记忆自动分析
- 批准号:
7653067 - 财政年份:2009
- 资助金额:
$ 7.61万 - 项目类别:
Automated Analysis of Learning and Memory for Neuro-Developmental Studies
用于神经发育研究的学习和记忆自动分析
- 批准号:
7915296 - 财政年份:2009
- 资助金额:
$ 7.61万 - 项目类别:
Biophysical controls of vertebrate organ regeneration
脊椎动物器官再生的生物物理控制
- 批准号:
7751988 - 财政年份:2008
- 资助金额:
$ 7.61万 - 项目类别:
Novel Mechanism of Induction of Eye Tissue: Katp Channel Modulation
眼组织诱导的新机制:Katp 通道调制
- 批准号:
7776603 - 财政年份:2008
- 资助金额:
$ 7.61万 - 项目类别:
Novel Mechanism of Induction of Eye Tissue: Katp Channel Modulation
眼组织诱导的新机制:Katp 通道调制
- 批准号:
7661499 - 财政年份:2008
- 资助金额:
$ 7.61万 - 项目类别:
Novel Mechanism of Induction of Eye Tissue: Katp Channel Modulation
眼组织诱导的新机制:Katp 通道调制
- 批准号:
7906653 - 财政年份:2008
- 资助金额:
$ 7.61万 - 项目类别:
Novel Mechanism of Induction of Eye Tissue: Katp Channel Modulation
眼组织诱导的新机制:Katp 通道调制
- 批准号:
7372064 - 财政年份:2008
- 资助金额:
$ 7.61万 - 项目类别:
Biophysical controls of vertebrate organ regeneration
脊椎动物器官再生的生物物理控制
- 批准号:
8111705 - 财政年份:2008
- 资助金额:
$ 7.61万 - 项目类别:
MEMBRANE VOLTAGE IN SPINAL CORD/MUSCLE REGENERATION
脊髓/肌肉再生中的膜电压
- 批准号:
7953865 - 财政年份:2008
- 资助金额:
$ 7.61万 - 项目类别:
Biophysical controls of vertebrate organ regeneration
脊椎动物器官再生的生物物理控制
- 批准号:
7659608 - 财政年份:2008
- 资助金额:
$ 7.61万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 7.61万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 7.61万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 7.61万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 7.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 7.61万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 7.61万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 7.61万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 7.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 7.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 7.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)