Collaborative Research: CNS Core: Medium: Real-Time Liquid Wireless Networking for Data-Intensive Rural Applications

合作研究:CNS 核心:媒介:数据密集型农村应用的实时液体无线网络

基本信息

  • 批准号:
    2212574
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Rural broadband is a foundation for a strong rural economy and quality of life, and many rural applications require real-time data-intensive communications. Wireless networks are essential building blocks of rural broadband; however, rural wireless is subject to environmental factors such as weather, terrain, foliage, and crop types and densities, and rural wireless networks need to provide coverage to much larger areas with less density than urban networks. To support real-time data-intensive rural applications, this project will investigate Real-Time Liquid Wireless Networking (RT-LWN). The RT-LWN framework is expected to become a foundational component of rural broadband solutions, and the enabled real-time data-intensive rural applications such as agriculture automation and immersive online education are expected to have a transformative impact on rural industries and communities. This project will generate first-of-its-kind real-world measurement data and models of rural access and backhaul links, and they will be of broad use by the research and education communities. This project will create exciting opportunities for broadening participation in computing, and it will help enrich undergraduate and graduate research and education as well as K-12 outreach. Project results will be broadly disseminated. In the RT-LWN framework, application data are encoded using fountain codes and then delivered across wireless access and backhaul networks with probabilistic real-time packet delivery guarantees. The liquidity of fountain-encoded data, together with a field-deployable approach to probabilistic real-time communication guarantees across wireless access and backhaul, enables efficient, real-time delivery of each source block while fully leveraging the aggregate capacity of heterogeneous wireless networks in the presence of fast-varying dynamics and uncertainties. The RT-LWN framework effectively integrates fountain-encoded liquid data with the design of predictable wireless networking. In particular, with predictable control of communication reliability, timeliness, and throughput at the link, network, and liquid transport layers, RT-LWN enables “predictability by design”, and it tackles the resiliency and performance challenges of rural wireless at the same time, to enable transformative real-time data-intensive applications. RT-LWN embeds liquid data networking into a rural wireless network architecture featuring 1) novel, effective integration of the liquid transport layer into end-points, 2) functional decomposition across the liquid transport layer and lower layers based on the end-to-end principle, and 3) field-deployable, holistic designs for addressing complex, fast-varying wireless dynamics and uncertainties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
农村宽带是强大的农村经济和生活质量的基础,许多农村应用需要实时数据密集型通信。无线网络是农村宽带的重要组成部分;然而,农村无线受天气、地形、树叶、作物类型和密度等环境因素的影响,农村无线网络需要覆盖比城市网络更大的区域,但密度要低。为了支持实时数据密集型的农村应用,该项目将研究实时液体无线网络(RT-LWN)。RT-LWN框架预计将成为农村宽带解决方案的基础组成部分,而农业自动化和沉浸式在线教育等实时数据密集型农村应用预计将对农村产业和社区产生变革性影响。该项目将产生第一个农村接入和回程链路的真实世界测量数据和模型,它们将被研究和教育界广泛使用。这个项目将创造令人兴奋的机会,扩大参与计算,它将有助于丰富本科生和研究生的研究和教育以及K-12推广。项目成果将广泛传播。在RT-LWN框架中,应用数据使用喷泉码进行编码,然后通过无线接入和回程网络进行传输,并具有概率实时数据包传输保证。喷泉编码数据的流动性,以及在无线接入和回程中实现概率实时通信保证的现场可部署方法,使每个源块的高效实时交付成为可能,同时在快速变化的动态和不确定性的存在下充分利用异构无线网络的聚合容量。RT-LWN框架有效地将喷泉编码的液体数据与可预测的无线网络设计相结合。特别是,通过对链路、网络和液体传输层的通信可靠性、及时性和吞吐量进行可预测的控制,RT-LWN实现了“设计的可预测性”,同时解决了农村无线的弹性和性能挑战,以实现变革性的实时数据密集型应用。RT-LWN将液体数据网络嵌入到农村无线网络架构中,其特点是:1)将液体传输层有效集成到端点,2)基于端到端原则跨液体传输层和较低层进行功能分解,以及3)可现场部署的整体设计,用于解决复杂的,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Luby其他文献

Real-Time Liquid Wireless Transport for Video Streaming in Rural and Agricultural Applications
用于农村和农业应用中视频流的实时液体无线传输
  • DOI:
    10.1145/3638036.3640806
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. K. A. Permatasari;Evan Gossling;Md Nadim;Sarath Babu;Daji Qiao;Hongwei Zhang;Michael Luby;John W. Byers;L. Minder;P. Aggrawal
  • 通讯作者:
    P. Aggrawal
An Efficient Monte-carlo Algorithm for the Ml-type Ii Parameter Estimation of Non-linear Diffusions (an Extended Abstract)
非线性扩散 Ml 型 Ii 参数估计的高效蒙特卡罗算法(扩展摘要)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Dagum;Richard M. Karp;Michael Luby;Sheldon M. Ross
  • 通讯作者:
    Sheldon M. Ross
FLID-DL: congestion control for layered multicast
FLID-DL:分层组播的拥塞控制
  • DOI:
    10.1109/jsac.2002.803998
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John W. Byers;Gavin B. Horn;Michael Luby;Michael Mitzenmacher;William Shaver
  • 通讯作者:
    William Shaver

Michael Luby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Luby', 18)}}的其他基金

EAGER: Liquid Foundation Internet
EAGER:互联网粉底液
  • 批准号:
    1936572
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Efficient Algorithms for Encoding and Decoding Asymptotically Good Error Correcting Codes
用于编码和解码渐近良好纠错码的高效算法
  • 批准号:
    9800452
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Workshop at ICSI: On Randomized Algorithms and Computation, December 17-22, l995, Berkeley, California
ICSI 研讨会:随机算法和计算,1995 年 12 月 17 日至 22 日,加利福尼亚州伯克利
  • 批准号:
    9531792
  • 财政年份:
    1995
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Efficient Algorithm Design Using Randomness Parsimoniously
简约地利用随机性的高效算法设计
  • 批准号:
    9304722
  • 财政年份:
    1993
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Uses and Simulation of Randomness: Applications to Cryptography,Program Checking and Counting Problems.
随机性的使用和模拟:在密码学、程序检查和计数问题中的应用。
  • 批准号:
    9016468
  • 财政年份:
    1991
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
  • 批准号:
    2318573
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了