CPS: Medium: Connected Federated Farms: Privacy-Preserving Cyber Infrastructure for Collaborative Smart Farming

CPS:中:互联联合农场:用于协作智能农业的隐私保护网络基础设施

基本信息

  • 批准号:
    2212878
  • 负责人:
  • 金额:
    $ 118.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

With the advancements in sensing technologies, agricultural farm management has transformed into a data-enabled process. Data collected at farms enabled artificial intelligence (AI) frameworks to develop models capable of predicting traits such as crop yields and health conditions, allowing for data-informed decision-making. However, in the current state of practice, these smart farms are siloed, developing AI models solely based on data obtained from a farm, ignoring the data generated in other farms. This lack of collaboration among farms results in limited generalization capability of models and directly impacts farm management decisions. While pooling data from a network of farms into a centralized server to generate more robust models is possible, most farmers are reluctant to share their data due to data privacy concerns. Therefore, this project aims to develop a novel holistic framework that allows for collaboration between farms, preserves privacy, and encourages simultaneous collaboration and personalization in the data-driven modeling of agricultural farms. The constructed models are used in farm decision-making and management. This framework will alleviate farmers’ data privacy concerns, resulting in further adoption of smart farming technologies. Therefore, the project may result in the more prevalent use of digital tools by farms, improving management decisions and increasing farm productivity. Eventually, the acceptance and use of digital solutions will enhance food quality and decrease the environmental footprint. Several educational and outreach efforts for the integration of research into undergraduate and graduate courses and broadening the participation of underrepresented groups are envisioned.The project aims to develop a federated analytics framework for high-dimensional and big data common in smart agricultural farms. The project will design a novel federated robust tensor-based modeling paradigm that enables exploiting the spatiotemporal structure of smart farm datasets. When the proposed approach is used, each farm creates a local model that is then transmitted to an aggregator, which creates an aggregated model. The aggregated model is then broadcast to each farm to generate a personalized model that supports local decision-making. The low-dimensional embedding of the tensor model allows for reduced model communication between the farms and the aggregator. Differential privacy approaches will be investigated to enhance the privacy-preservation properties of the proposed framework. The developed AI-enhanced connected multi-farm system will be tested in citrus as a case study. The proposed framework can contribute to other areas, such as modeling and monitoring multi-farm renewable energy systems and multi-facility advanced manufacturing systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着传感技术的进步,农业农场管理已经转变为一个数据驱动的过程。在农场收集的数据使人工智能(AI)框架能够开发能够预测作物产量和健康状况等性状的模型,从而实现基于数据的决策。然而,在目前的实践状态下,这些智能农场是孤立的,仅基于从农场获得的数据开发人工智能模型,忽略了其他农场生成的数据。农场之间缺乏协作导致模型的泛化能力有限,并直接影响农场管理决策。虽然将农场网络中的数据汇集到集中式服务器中以生成更强大的模型是可能的,但由于数据隐私问题,大多数农民不愿意分享他们的数据。因此,该项目旨在开发一种新型的整体框架,允许农场之间的协作,保护隐私,并鼓励在农业农场的数据驱动建模中同时协作和个性化。所构建的模型可用于农场的决策和管理。该框架将缓解农民对数据隐私的担忧,从而进一步采用智能农业技术。因此,该项目可能导致农场更普遍地使用数字化工具,改善管理决策并提高农场生产力。最终,数字解决方案的接受和使用将提高食品质量并减少环境足迹。该项目设想了几项教育和推广工作,将研究纳入本科生和研究生课程,并扩大代表性不足的群体的参与。该项目旨在为智能农业农场中常见的高维和大数据开发联合分析框架。该项目将设计一种新的基于联合鲁棒张量的建模范式,以利用智能农场数据集的时空结构。当使用所提出的方法时,每个农场创建本地模型,然后将其传输到聚合器,聚合器创建聚合模型。然后将聚合模型广播到每个农场,以生成支持本地决策的个性化模型。张量模型的低维嵌入允许减少场和聚合器之间的模型通信。差分隐私的方法将进行调查,以提高隐私保护性能的建议框架。开发的人工智能增强的连接多农场系统将作为案例研究在柑橘中进行测试。该框架还可以为其他领域做出贡献,如多农场可再生能源系统和多设施先进制造系统的建模和监控。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mostafa Reisi Gahrooei其他文献

FedPAR: Federated PARAFAC2 tensor factorization for computational phenotyping
FedPAR:用于计算表型分析的联合 PARAFAC2 张量分解
Timing residential photovoltaic investments in the presence of demand uncertainties
  • DOI:
    10.1016/j.scs.2015.10.003
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mostafa Reisi Gahrooei;Yuna Zhang;Baabak Ashuri;Godfried Augenbroe
  • 通讯作者:
    Godfried Augenbroe

Mostafa Reisi Gahrooei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mostafa Reisi Gahrooei', 18)}}的其他基金

Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
  • 批准号:
    2316652
  • 财政年份:
    2023
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Standard Grant
Collaborative Research: A Dynamic Disruption Prediction System for Transportation Networks at a Road-Segment Level of Granularity
合作研究:路段粒度级交通网络动态中断预测系统
  • 批准号:
    2027024
  • 财政年份:
    2020
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 118.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了