LEAPS-MPS: Nanopatterning Nitride Based Nanostructures Using Sequential Infiltration Synthesis for Optoelectronic Applications

LEAPS-MPS:利用连续渗透合成技术对氮化物基纳米结构进行纳米图案化,用于光电应用

基本信息

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Non-Technical Summary:Optoelectronic devices, including photodetectors, solar cells, and light-emitting diodes (LEDs), are essentially energy conversion devices which converts light to electricity or vice versa. These devices are used in many aspects of modern life such as telecommunication, energy, consumer electronics, and solid-state lighting. Most commonly the active material in optoelectronic devices are Gallium Nitride (GaN) or Aluminum Nitride (AlN). These materials have attracted significant attention and are of great interest because of their emission in ultraviolet (UV) and visible wavelengths. Nanostructures of nitride materials are not as common as planar structures which are currently used in commercial devices, but they could enable future devices with novel functionalities. With this award from the LEAPS-MPS program researchers at Illinois State University develop nanopatterns of AlN and GaN by using a synthesis approach called Sequential Infiltration Synthesis (SIS). SIS allows them to investigate the growth mechanism of the nitride materials as well as optical properties of nanostructures with different shapes morphologies. In addition to this research being of great interest to the semiconductor industry, the project also enhances the undergraduate education at a primarily undergraduate institution because students can participate in cutting-edge experimental research, which provides hands-on synthesis and characterization opportunities. This effort also broadens the semiconductor workforce by integrating research results into the physics curriculum as part of an upper-level experimental physics courses. The recipient of this award, an early career female faculty member is a role model for female and minority students, encouraging them to choose STEM careers. Technical Summary:In the field of optoelectronic research, group III nitrides such as AlN and GaN have gained significant attention over last few decades due to their stabilities and as a wide band gap semiconductor with emission in the ultraviolet and visible ranges. The planar structured nitride materials currently used in commercial devices come with limitations such as defects and dislocations due to lattice mismatch with available substrates which consequently limit the performance of the resulting devices, high temperature requirements limiting choice of substrates and the dimensions are not suitable for futuristic nanoscale devices. For emerging devices, the concerns related to planar structures can be alleviated by employing nanostructures of these materials. However, fabrication methods of nanostructured nitride materials are still in infancy and current approaches are complex and multi-step processes. Significant improvements and a fundamental understanding are needed regarding the growth of nitride nanostructures and subsequent long-range patterning of these nanostructures. With this award from the LEAPS-MPS program the researchers synthesize AlN and GaN nanorod patterns using nanostructured block copolymer (BCP) templates and an inorganic deposition method called Sequential Infiltration Synthesis (SIS). The SIS process involves infiltration of gas phase molecules into soft polymeric materials. This project investigates the SIS growth mechanism for nitride materials using Fourier Transform Infrared Spectroscopy (FTIR) as well as other physical, structural and optical characterization techniques. These and other methods, including scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD), photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopy, and cathodoluminescence (CL) imaging, are used to study the resulting nanostructures. The proposed work opens up new avenues of research to realize nitride nanomaterial growth and patterning using SIS as a facile and cost-effective method.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。光电器件,包括光电探测器、太阳能电池和发光二极管(LED),本质上是将光转换为电或将电转换为光的能量转换器件。这些设备用于现代生活的许多方面,例如电信、能源、消费电子产品和固态照明。光电器件中最常见的活性材料是氮化镓(GaN)或氮化铝(AlN)。这些材料已经吸引了显著的注意力,并且由于它们在紫外(UV)和可见波长中的发射而引起极大的兴趣。氮化物材料的纳米结构并不像目前商业设备中使用的平面结构那样常见,但它们可以使未来的设备具有新的功能。有了LEAPS-MPS计划的这个奖项,伊利诺伊州立大学的研究人员通过使用一种称为顺序渗透合成(SIS)的合成方法开发了AlN和GaN的纳米材料。SIS允许他们研究氮化物材料的生长机制以及具有不同形状形貌的纳米结构的光学性质。除了这项研究对半导体行业非常感兴趣之外,该项目还增强了主要本科院校的本科教育,因为学生可以参与尖端的实验研究,这提供了动手合成和表征的机会。这一努力还通过将研究成果整合到物理课程中作为高级实验物理课程的一部分来扩大半导体劳动力。该奖项的获得者是一位早期职业女性教师,她是女性和少数民族学生的榜样,鼓励他们选择STEM职业。在光电子研究领域,III族氮化物如AlN和GaN由于其稳定性以及作为在紫外和可见光范围内发射的宽带隙半导体而在过去几十年中获得了极大的关注。目前用于商业器件的平面结构氮化物材料具有限制,例如由于与可用衬底的晶格失配而导致的缺陷和位错,这因此限制了所得器件的性能,高温要求限制了衬底的选择,并且尺寸不适合未来的纳米级器件。对于新兴器件,与平面结构相关的问题可以通过采用这些材料的纳米结构来缓解。然而,纳米结构氮化物材料的制造方法仍处于婴儿期,并且当前的方法是复杂的多步骤工艺。关于氮化物纳米结构的生长和随后的这些纳米结构的长距离图案化,需要显著的改进和基本的理解。凭借LEAPS-MPS计划的这一奖项,研究人员使用纳米结构嵌段共聚物(BCP)模板和称为顺序渗透合成(SIS)的无机沉积方法合成AlN和GaN纳米棒图案。SIS工艺涉及气相分子渗透到软聚合物材料中。本项目利用傅里叶变换红外光谱(FTIR)以及其他物理、结构和光学表征技术研究氮化物材料的SIS生长机制。这些和其他方法,包括扫描电子显微镜(SEM),能量色散X射线光谱(EDX),X射线衍射(XRD),光致发光(PL)和光致发光激发(PLE)光谱,和阴极发光(CL)成像,用于研究所得的纳米结构。这项工作开辟了新的研究途径,以实现氮化物纳米材料的生长和图案化使用SIS作为一种简便和具有成本效益的方法。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的知识价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mahua Biswas其他文献

Mahua Biswas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mahua Biswas', 18)}}的其他基金

MRI: Acquisition of a Field Emission Scanning Electron Microscope to Advance Multidisciplinary Research and Education
MRI:购买场发射扫描电子显微镜以推进多学科研究和教育
  • 批准号:
    2116612
  • 财政年份:
    2021
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Standard Grant

相似国自然基金

时序释放Met/Qct-MPs葡萄糖响应型水凝胶对糖尿病创面微环境调节机制的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
脓毒症血浆中微粒(MPs)对免疫细胞的作用机制 及其免疫抑制的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
中性粒细胞释放CitH3+MPs活化NLRP3炎性小体激活胆汁淤积性肝病肝内凝血活性
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于代谢组学的滋水清肝饮干预乳腺癌内分泌治疗相关MPS的多中心临床研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
六价铬和PET-MPs联合暴露诱导大鼠神经毒性铁死亡的机制研究
  • 批准号:
    2024Y9704
  • 批准年份:
    2024
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于 MPS 方法的燃料熔盐高温氧化与凝固迁徙行为机理研究
  • 批准号:
    24ZR1478500
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
  • 批准号:
    82303896
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
  • 批准号:
    42372341
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
  • 批准号:
    82370847
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
  • 批准号:
    82101760
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Fellowship Award
生理機能を再現するオルガノイド融合型MPSデバイスの開発
开发再现生理功能的类器官融合 MPS 装置
  • 批准号:
    23K26472
  • 财政年份:
    2024
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ヒト脳関門の統合評価システムBrain-MPSの構築
人脑屏障综合评价系统Brain-MPS的构建
  • 批准号:
    24K18340
  • 财政年份:
    2024
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
  • 批准号:
    2316289
  • 财政年份:
    2024
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Light Tunable Redox-Active Hybrid Nanomaterial with Ultrahigh Catalytic Activity for Colorimetric Applications
LEAPS-MPS:具有超高催化活性的光可调氧化还原活性混合纳米材料,适用于比色应用
  • 批准号:
    2316793
  • 财政年份:
    2024
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
  • 批准号:
    2425308
  • 财政年份:
    2024
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
  • 批准号:
    2316167
  • 财政年份:
    2023
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
  • 批准号:
    2316538
  • 财政年份:
    2023
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Fellowship Award
LEAPS-MPS: Cooperative Transformations of N-Heterocycles with Heterometallic Complexes
LEAPS-MPS:N-杂环与异金属配合物的协同转化
  • 批准号:
    2316582
  • 财政年份:
    2023
  • 资助金额:
    $ 17.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了