LEAPS-MPS: Incorporating Stratification by Vaccination Status and Virus Variants in Mathematical Models of Infectious Disease Spread

LEAPS-MPS:将按疫苗接种状态和病毒变种进行的分层纳入传染病传播的数学模型

基本信息

  • 批准号:
    2213390
  • 负责人:
  • 金额:
    $ 24.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Since the beginning of the COVID-19 pandemic, mathematical modeling has played a significant role in assessing and forecasting the impacts of the disease and guiding public health policy. Existing mathematical frameworks, however, have been slow to adapt to sudden changes in disease spread dynamics resulting from the waning vaccine immunity and emergence of COVID-19 variants such as delta and omicron. This project will address these challenges by developing data-driven mathematical modeling tools which divide populations according to factors that have distinct characteristics, such as those due to differences in vaccination status and the spread of virus variants. As COVID-19 evolves and becomes endemic in the global population, the developed frameworks will guide public health officials in evaluating the effectiveness of potential vaccination strategies and assessing the capacity of variants to alter the course of disease spread. This will facilitate targeted and impactful policies rather than disruptive population-wide restrictions and lockdowns. The project will engage undergraduate students in topical applied mathematics research and support underrepresented students in STEM with a particular focus on the African American community in Metro Detroit. The project will additionally advance curricular and program development at Lawrence Technological University, which will enhance the institution's research environment and further the principal investigator’s professional goal of establishing a sustained, student-focused, and interdisciplinary research program in mathematical biology at Lawrence Technological University.Traditional mathematical modeling frameworks of infectious disease spread often ignore factors of heterogeneous spread within a population. This can lead to poor estimates of epidemiological parameters (such as the basic reproduction number and herd immunity threshold), mistaken assessments of the mechanisms of disease spread, and inaccurate forecasts. This project will develop the theory and application of compartmental SIR-type (Susceptible-Infectious-Recovered) models, which are associated with a system of ordinary differential equations, to incorporate variances in a population's vaccination coverage level, differing waning immunity periods, and competition between virus variants with distinct epidemiological characteristics. Waning immunity will be incorporated through a gamma-distributed delay on return to susceptibility after vaccination or previous infection. The resulting distributed delay differential equations will be analyzed and numerically simulated using the linear chain trick, which reduces gamma-distributed delays to a linear chain of exponential delays. Case data from The Michigan Department of Health and Human Services will be used to parametrize and validate the models with the goal of providing insightful forecasts for the spread of COVID-19 under different immunization schedules. Virus variants will be incorporated by dividing the infectious class into distinct compartments with variant-specific parameters, such as variances in transmissibility, severity, vaccine resistance, reinfection rate, and diagnostic detection. The goal will be to establish novel critical thresholds for when a virus variant can persist or become dominant in a population as well as address the inverse question of estimating a variant's epidemiological parameters from its early-stage growth. By controlling a population's vaccination coverage level, the developed models will be able to cut through the complexity of case incidence data to provide critical insights into the primary factors driving disease spread. User-friendly computational packages capable of implementing the models and interfacing with public health databases will be developed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援计划法案》(公法117-2)。自新冠肺炎大流行开始以来,数学建模在评估和预测疾病的影响以及指导公共卫生政策方面发挥了重要作用。然而,现有的数学框架在适应疾病传播动力学的突然变化方面一直进展缓慢,这些变化是由于疫苗免疫力减弱和新冠肺炎变体的出现而引起的,如Delta和OMICRON。该项目将通过开发数据驱动的数学建模工具来应对这些挑战,这些工具根据具有明显特征的因素来划分人口,例如由于疫苗接种状况的差异和病毒变种的传播而造成的因素。随着新冠肺炎的演变并在全球人口中流行,所开发的框架将指导公共卫生官员评估潜在疫苗接种策略的有效性,并评估变种改变疾病传播过程的能力。这将促进有针对性和有影响力的政策,而不是破坏性的全人口限制和封锁。该项目将使本科生参与专题应用数学研究,并支持STEM中代表性不足的学生,特别是底特律大都会的非裔美国人社区。该项目还将推进劳伦斯理工大学的课程和项目开发,这将改善该机构的研究环境,并促进首席研究员的专业目标,即在劳伦斯理工大学建立一个持续的、以学生为中心的跨学科数学生物学研究项目。传统的传染病传播数学建模框架往往忽略了人群中异质性传播的因素。这可能导致对流行病学参数(如基本繁殖数和群体免疫阈值)的估计不佳,对疾病传播机制的错误评估,以及不准确的预测。该项目将发展与常微分方程组相关的隔区SIR型(易感-感染-恢复)模型的理论和应用,以纳入人群疫苗接种覆盖率的差异、不同的免疫期减弱以及具有不同流行病学特征的病毒变种之间的竞争。免疫减弱将通过在接种疫苗或以前感染后恢复易感性的伽马分布延迟来纳入。所得到的分布式延迟微分方程将使用线性链技巧进行分析和数值模拟,该技巧将伽马分布的延迟减少为指数延迟的线性链。来自密歇根州卫生与公众服务部的病例数据将被用来对模型进行参数化和验证,目的是为不同免疫计划下新冠肺炎的传播提供有洞察力的预测。病毒变种将被纳入,方法是将感染类别划分为具有变种特定参数的不同区段,例如在传播性、严重性、疫苗抗药性、再感染率和诊断检测方面的差异。目标将是建立新的临界阈值,以确定病毒变体何时能够在人群中持续存在或成为主导,并解决从变种的早期生长估计其流行病学参数的相反问题。通过控制人群的疫苗接种覆盖率,开发的模型将能够突破病例发生率数据的复杂性,为推动疾病传播的主要因素提供关键的见解。将开发用户友好的计算包,能够实施模型并与公共卫生数据库接口。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity
  • DOI:
    10.3934/mbe.2023718
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Johnston,Matthew D.;Pell,Bruce;Rubel,David. A.
  • 通讯作者:
    Rubel,David. A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Johnston其他文献

Do I consider a career in dental academia and if so how do I go about it?
我是否考虑在牙科学术界发展职业生涯,如果是,我该怎么做?
  • DOI:
    10.1038/s41415-020-1991-y
  • 发表时间:
    2020-08-28
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Charlotte Schofield;Matthew Johnston;Paul Blaylock
  • 通讯作者:
    Paul Blaylock
Immersive Captioning: Developing a framework for evaluating user needs
沉浸式字幕:开发评估用户需求的框架
Visual Perceptual Skills Training in Virtual Environments
虚拟环境中的视觉感知技能训练
Test-Retest Reliability of CogGauge: A Cognitive Assessment Tool for SpaceFlight
CogGauge 的测试再测试可靠性:太空飞行认知评估工具
Correction to: Very preterm infants engage in an intervention to train their control of attention: results from the feasibility study of the attention control training (ACT) randomised trial
  • DOI:
    10.1186/s40814-021-00943-8
  • 发表时间:
    2021-11-11
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Oliver Perra;Sam Wass;Alison McNulty;David Sweet;Kostas A. Papageorgiou;Matthew Johnston;Delfina Bilello;Aaron Patterson;Fiona Alderdice
  • 通讯作者:
    Fiona Alderdice

Matthew Johnston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Johnston', 18)}}的其他基金

SBIR Phase I: Personal radiation biodosimetry using thin-film acoustic resonators
SBIR 第一阶段:使用薄膜声谐振器进行个人辐射生物剂量测定
  • 批准号:
    1314228
  • 财政年份:
    2013
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
SBIR Phase I: High Energy Density Film Capacitators
SBIR 第一阶段:高能量密度薄膜电容器
  • 批准号:
    0839428
  • 财政年份:
    2009
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant

相似国自然基金

时序释放Met/Qct-MPs葡萄糖响应型水凝胶对糖尿病创面微环境调节机制的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
脓毒症血浆中微粒(MPs)对免疫细胞的作用机制 及其免疫抑制的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
中性粒细胞释放CitH3+MPs活化NLRP3炎性小体激活胆汁淤积性肝病肝内凝血活性
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于代谢组学的滋水清肝饮干预乳腺癌内分泌治疗相关MPS的多中心临床研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
六价铬和PET-MPs联合暴露诱导大鼠神经毒性铁死亡的机制研究
  • 批准号:
    2024Y9704
  • 批准年份:
    2024
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于 MPS 方法的燃料熔盐高温氧化与凝固迁徙行为机理研究
  • 批准号:
    24ZR1478500
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
  • 批准号:
    82303896
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
  • 批准号:
    42372341
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
  • 批准号:
    82370847
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
  • 批准号:
    82101760
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Fellowship Award
生理機能を再現するオルガノイド融合型MPSデバイスの開発
开发再现生理功能的类器官融合 MPS 装置
  • 批准号:
    23K26472
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ヒト脳関門の統合評価システムBrain-MPSの構築
人脑屏障综合评价系统Brain-MPS的构建
  • 批准号:
    24K18340
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
  • 批准号:
    2425308
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
  • 批准号:
    2316289
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Light Tunable Redox-Active Hybrid Nanomaterial with Ultrahigh Catalytic Activity for Colorimetric Applications
LEAPS-MPS:具有超高催化活性的光可调氧化还原活性混合纳米材料,适用于比色应用
  • 批准号:
    2316793
  • 财政年份:
    2024
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
  • 批准号:
    2316167
  • 财政年份:
    2023
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
  • 批准号:
    2316538
  • 财政年份:
    2023
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Fellowship Award
LEAPS-MPS: Cooperative Transformations of N-Heterocycles with Heterometallic Complexes
LEAPS-MPS:N-杂环与异金属配合物的协同转化
  • 批准号:
    2316582
  • 财政年份:
    2023
  • 资助金额:
    $ 24.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了