Encoding Dynamic Traffic Flow Analysis into AI for Network-Wide Early Alarming of Traffic-Demand-Influencing Events and Their Impacts
将动态交通流分析编码到人工智能中,以便对影响交通需求的事件及其影响进行全网早期预警
基本信息
- 批准号:2213459
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will integrate dynamic traffic flow analysis into artificial intelligence to provide early alarming of significant traffic-demand-influencing events (DIEs) and the associated traffic impacts. Urban traffic can deviate from normal states due to various scheduled and unscheduled DIEs, such as sports, commercial promotions, and festivals. These events often induce a surge in traffic demand, cause hours of congestion, and affect multiple traffic infrastructures. Early awareness of DIEs and their traffic impact will benefit many stakeholders, including travelers, government, and transportation-related service providers, in taking proactive actions to manage traffic congestion. This project aims to develop a network-wide online DIE monitoring system, which can automatically provide early alarming of the DIEs and forecast the resulting congestions. The research outcomes can be directly employed to mitigate traffic network congestions and become an essential component of future smart city technologies. The interdisciplinary studies will open a new line of research on seamlessly integrating transportation engineering, data science, and artificial intelligence-based technologies to develop new scientific knowledge and methodologies for traffic operations and control. The PIs will integrate research into pedagogical developments at their home departments, actively disseminate research results, and engage in K-12 outreach activities via the Gator Outreach program at the University of Florida.This project will develop hybrid approaches that integrate traffic flow theories, optimization algorithms, high-dimensional machine learning, and artificial intelligence for monitoring the events that cause significant traffic demand surges in a (sub)urban area based on real-time temporal-spatial traffic data. The research will produce the following transformative scientific technologies: (1) Data science-empowered online shockwave generating algorithms to accommodate data imputation, which quantitatively captures the impact of a DIE on traffic conditions on a network over time; (2) innovative encoding approaches to compile shockwave diagrams for feeding machine learning model better; (3) sparse principal component analysis-based feature engineering for selecting and fusing the most promising subset of features for DIE monitoring; (4) a novel feature acquisition location recommendation scheme to determine where new features should be additionally acquired from the traffic network to boost the DIE-monitoring AI maximally; and (5) a radical extension to the recurrent neural network (RNN) model and theory by incorporating explicit regularization and distributed computing-compatible architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将把动态交通流分析集成到人工智能中,以提供重大交通需求影响事件(DIE)和相关交通影响的早期预警。城市交通可能会因各种预定和非预定的DIE(如体育、商业促销和节日)而偏离正常状态。这些事件通常会导致交通需求激增,造成数小时的拥堵,并影响多个交通基础设施。及早了解DIE及其对交通的影响将使许多利益相关者受益,包括旅行者、政府和交通相关服务提供商,从而采取积极行动来管理交通拥堵。本项目旨在开发一个全网络的在线DIE监测系统,该系统可以自动提供DIE的早期报警并预测由此产生的故障。其研究成果可直接用于缓解交通网络拥堵,并成为未来智慧城市技术的重要组成部分。跨学科研究将开辟一条新的研究路线,无缝集成交通工程,数据科学和基于人工智能的技术,为交通运营和控制开发新的科学知识和方法。 PI将把研究融入到他们所在部门的教学发展中,积极传播研究成果,并通过佛罗里达大学的Gator Outreach计划参与K-12推广活动。该项目将开发混合方法,将交通流理论,优化算法,高维机器学习,以及人工智能,用于基于实时时间-空间交通数据来监测在(次)城市区域中引起显著交通需求激增的事件。该研究将产生以下变革性的科学技术:(1)数据科学授权的在线冲击波生成算法,以适应数据插补,该算法定量捕获DIE随时间推移对网络交通状况的影响;(2)创新的编码方法,以编译冲击波图,从而更好地为机器学习模型提供支持;(3)基于稀疏主成分分析的特征工程,用于选择和融合用于DIE监测的最有希望的特征子集;(四)一种新颖的特征获取位置推荐方案,用于确定应该从交通网络的何处额外获取新特征,最大限度地提高了芯片监控AI;(5)通过结合显式正则化和分布式计算兼容架构,对递归神经网络(RNN)模型和理论进行了根本性的扩展。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Traffic Flow Dependency and Dynamics based Deep Learning Aided Approach for Network-Wide Traffic Speed Propagation Prediction
- DOI:10.1016/j.trb.2022.11.009
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Hanyi Yang;Lili Du;Guohui Zhang;Tianwei Ma
- 通讯作者:Hanyi Yang;Lili Du;Guohui Zhang;Tianwei Ma
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lili Du其他文献
In situ construction of graphdiyne/CuS heterostructures for efficient hydrogen evolution reaction
原位构建石墨炔/CuS异质结构以实现高效析氢反应
- DOI:
10.1039/c9qm00064j - 发表时间:
2019-04 - 期刊:
- 影响因子:7
- 作者:
Guodong Shi;Lili Du;Wei Xie;Changming Dong;Dongbing Zhao;Mei Wang;Mingjian Yuan;Xinliang Fu;Zixiong Fan - 通讯作者:
Zixiong Fan
System dynamic modeling of urban carbon emissions based on the regional National Economy and Social Development Plan: A case study of Shanghai city
- DOI:
doi.org/10.1016/j.jclepro.2017.10.128 - 发表时间:
2017 - 期刊:
- 影响因子:11.1
- 作者:
Lili Du;Xianzhe Li;Haijun Zhao;Weichun Ma;Ping Jiang - 通讯作者:
Ping Jiang
Excitation-Wavelength-Dependent and Auxiliary-Ligand-Tuned Intersystem-Crossing Efficiency in Cyclometalated Platinum(II) Complexes: Spectroscopic and Theoretical Studies
- DOI:
10.1021/acs.inorgchem.0c01192 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Kai Li;Glenna So Ming Tong;Jia Yuan;Chensheng Ma;Lili Du;Chen Yang;Wai-Ming Kwok;David Lee Phillips;Chi-Ming Che - 通讯作者:
Chi-Ming Che
The synthesis strategies of covalent organic frameworks and advances in their application for adsorption of heavy metal and radionuclide
共价有机框架的合成策略及其在重金属和放射性核素吸附应用中的进展
- DOI:
10.1016/j.scitotenv.2024.173478 - 发表时间:
2024-08-20 - 期刊:
- 影响因子:8.000
- 作者:
Lili Du;Xiang Li;Xiaofeng Lu;Yong Guo - 通讯作者:
Yong Guo
Photocatalytic therapy via photoinduced redox imbalance in biological system
通过生物系统中光致氧化还原失衡的光催化治疗
- DOI:
10.1038/s41467-024-55060-w - 发表时间:
2024-12-04 - 期刊:
- 影响因子:15.700
- 作者:
Kun Zhou;Lili Du;Rui Ding;Letian Xu;Shuai Shi;Siyuan Wang;Zaiyu Wang;Guoqing Zhang;Gang He;Zheng Zhao;Ben Zhong Tang - 通讯作者:
Ben Zhong Tang
Lili Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lili Du', 18)}}的其他基金
Workshop/Collaborative Research: The Frontiers of Artificial Intelligence-Empowered Methods and Solutions to Urban Transportation Challenges
研讨会/合作研究:人工智能赋能的方法和城市交通挑战解决方案的前沿
- 批准号:
2203497 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Smart Vehicle Platooning Built upon Real-Time Learning and Distributed Optimization
协作研究:基于实时学习和分布式优化的智能车辆编队
- 批准号:
1901994 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Integrated Online Coordinated Routing and Decentralized Control for Connected Vehicle Systems
职业:互联车辆系统的集成在线协调路由和分散控制
- 批准号:
1818526 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Coordinated Real-Time Traffic Management Based on Dynamic Information Propagation and Aggregation under Connected Vehicle Systems
协作研究:车联网系统下基于动态信息传播和聚合的协同实时交通管理
- 批准号:
1817346 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Integrated Online Coordinated Routing and Decentralized Control for Connected Vehicle Systems
职业:互联车辆系统的集成在线协调路由和分散控制
- 批准号:
1554559 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Coordinated Real-Time Traffic Management Based on Dynamic Information Propagation and Aggregation under Connected Vehicle Systems
协作研究:车联网系统下基于动态信息传播和聚合的协同实时交通管理
- 批准号:
1436786 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Travel Support for Dynamic Traffic Assignment Conference (DTA 2023); Evanston, Illinois; 10-12 July 2023
动态交通分配会议 (DTA 2023) 的差旅支持;
- 批准号:
2330274 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Integrated Modeling and Optimization of Urban Land Use and Dynamic Traffic Network Equilibrium
城市土地利用与动态交通网络均衡综合建模与优化
- 批准号:
22K04575 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic Network Traffic Identification with Scalable and Resilient Machine Learning
通过可扩展且有弹性的机器学习进行动态网络流量识别
- 批准号:
576922-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alliance Grants
Job management system with dynamic traffic control functionality
具有动态流量控制功能的作业管理系统
- 批准号:
21K11912 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Calibration of a large scale dynamic traffic assignment model of the GTHA
GTHA大规模动态交通分配模型的标定
- 批准号:
561892-2021 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Connected Vehicle Based Traffic Dynamic Modeling and Proactive Freeway Control to Improve Mobility
基于联网车辆的交通动态建模和主动高速公路控制以提高移动性
- 批准号:
RGPIN-2016-06754 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Connected Vehicle Based Traffic Dynamic Modeling and Proactive Freeway Control to Improve Mobility
基于联网车辆的交通动态建模和主动高速公路控制以提高移动性
- 批准号:
RGPIN-2016-06754 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
An analysis of dynamic network traffic flow based on the game theory for advanced transport management
基于博弈论的先进传输管理动态网络流量分析
- 批准号:
20K14843 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Connected Vehicle Based Traffic Dynamic Modeling and Proactive Freeway Control to Improve Mobility
基于联网车辆的交通动态建模和主动高速公路控制以提高移动性
- 批准号:
RGPIN-2016-06754 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Statistical Learning, Driving Simulator-Based Modeling, and Computationally Tractable Dynamic Traffic Assignment
合作研究:统计学习、基于驾驶模拟器的建模以及计算可处理的动态交通分配
- 批准号:
1907563 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant