Collaborative Research: Statistical Learning, Driving Simulator-Based Modeling, and Computationally Tractable Dynamic Traffic Assignment
合作研究:统计学习、基于驾驶模拟器的建模以及计算可处理的动态交通分配
基本信息
- 批准号:1907563
- 负责人:
- 金额:$ 21.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Congestion is familiar to anyone who relies on a privately owned or rented automobile, taxi, or public transit for commuting, shopping and errand running. Historically, engineers and scientists exploring traffic networks frequently build mathematical models with the intent of coaxing from them insights revealing how congestion may evolve over time. Unfortunately, such models may easily become so large and complex that they are unwieldly, and simplifications are needed in order to provide passengers and drivers with accurate and rapidly computable information pertinent to route choice and departure time selection. Toward that goal, this project will employ modern statistics, simulation experiments, and notions of competition among traffic network users for available road capacity to better depict and more efficiently compute the behaviors of drivers who rely on road networks. The broader impacts of this research will be substantial. In particular, the results of this research will allow commuters and urban freight carriers to make more informed travel decisions, and governmental organizations to better regulate travel decisions within heavily congested major metropolitan regions. This study will also provide system-level experiential learning opportunities for students entering the transportation workforce. Specifically, through a combination of experiments and machine learning and model development, this project will aim to depict the noncooperative exploration of available routes and departure times by drivers and passengers seeking to fulfill their travel demands via metropolitan road networks. A key goal of the intended research will be the efficient computation of solutions to the most prevalent type of dynamic traffic assignment (DTA), namely so-called dynamic user equilibrium (DUE). It is the lack of closed-form travel-delay operators that makes DUE computation tedious and slow. The plan is to replace the existing, differential algebraic equation (DAE) system representing travel delay with closed-form, approximate delay operators based on a form of statistical learning known as Kriging. Ad hoc experiments based on such an approach show great promise for small networks, but are not definitive. The PIs will develop the envisioned models and make developed software available as free-ware or inexpensive apps.
对于那些依赖私人拥有或租用的汽车、出租车或公共交通工具上下班、购物和跑腿的人来说,拥堵是很熟悉的。从历史上看,探索交通网络的工程师和科学家经常建立数学模型,目的是从中获得洞察力,揭示拥堵如何随着时间的推移而演变。不幸的是,这样的模型可能很容易变得如此庞大和复杂,以至于它们是笨拙的,并且需要简化,以便为乘客和驾驶员提供与路线选择和出发时间选择相关的准确和快速可计算的信息。为了实现这一目标,本项目将采用现代统计学、模拟实验和交通网络用户之间竞争可用道路容量的概念,以更好地描述和更有效地计算依赖道路网络的驾驶员的行为。这项研究的广泛影响将是巨大的。特别是,这项研究的结果将使通勤者和城市货运公司做出更明智的出行决策,政府组织可以更好地监管严重拥挤的主要大都市地区的出行决策。这项研究还将为进入运输业的学生提供系统级的体验式学习机会。具体而言,通过实验、机器学习和模型开发的结合,该项目旨在描述司机和乘客通过大城市道路网络寻求满足其出行需求时对可用路线和出发时间的非合作探索。预期研究的一个关键目标将是最流行的动态交通分配(DTA)类型的解决方案的有效计算,即所谓的动态用户平衡(DUE)。由于缺乏闭合形式的旅行延迟算子,使得DUE计算繁琐且缓慢。该计划是取代现有的,微分代数方程(DAE)系统表示行程延迟与封闭形式,近似延迟运营商的基础上的一种形式的统计学习称为克里格。基于这种方法的Ad hoc实验显示出对小型网络的巨大潜力,但并不确定。PI将开发设想的模型,并将开发的软件作为免费软件或廉价应用程序提供。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid route choice model incorporating latent cognitive effects of real-time travel information using physiological data
- DOI:10.1016/j.trf.2021.05.021
- 发表时间:2021-06-25
- 期刊:
- 影响因子:4.1
- 作者:Agrawal, Shubham;Peeta, Srinivas
- 通讯作者:Peeta, Srinivas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivas Peeta其他文献
A sliding mode controller for vehicular traffic flow
一种车辆交通流滑模控制器
- DOI:
10.1016/j.physa.2016.06.053 - 发表时间:
2016-11 - 期刊:
- 影响因子:0
- 作者:
Srinivas Peeta;Li Zhang;Taixong Zheng;Yinguo Li - 通讯作者:
Yinguo Li
Combined multinomial logit modal split and paired combinatorial logit traffic assignment model
- DOI:
doi.org/10.1080/23249935.2018.1431701 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Jian Wang;Srinivas Peeta;Xiaozheng He;Jinbao Zhao - 通讯作者:
Jinbao Zhao
Evaluating the Effects of Switching Period of Communication Topologies and Delays on Electric Connected Vehicles Stream With Car-Following Theory
利用跟驰理论评估通信拓扑切换周期和延迟对电动车流的影响
- DOI:
10.1109/tits.2020.3006122 - 发表时间:
2021-12 - 期刊:
- 影响因子:8.5
- 作者:
Hang Zhao;Yongfu Li;Wei Hao;Srinivas Peeta;Yibing Wang - 通讯作者:
Yibing Wang
Long Short-Term Memory-Based Human-Driven Vehicle Longitudinal Trajectory Prediction in a Connected and Autonomous Vehicle Environment
联网和自主车辆环境中基于长短期记忆的人类驾驶车辆纵向轨迹预测
- DOI:
10.1177/0361198121993471 - 发表时间:
2021-02 - 期刊:
- 影响因子:0
- 作者:
Lei Lin;Siyuan Gong;Srinivas Peeta;Xia Wu - 通讯作者:
Xia Wu
Integral-Sliding-Mode Braking Control for a Connected Vehicle Platoon: Theory and Application
联网车辆队列的整体滑模制动控制:理论与应用
- DOI:
10.1109/tie.2018.2864708 - 发表时间:
2019-06 - 期刊:
- 影响因子:7.7
- 作者:
Yongfu Li;Chuancong Tang;Srinivas Peeta;Yibing Wang - 通讯作者:
Yibing Wang
Srinivas Peeta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivas Peeta', 18)}}的其他基金
SCC-IRG Track 1: Fostering Smart and Sustainable Travel through Engaged Communities using Integrated Multidimensional Information-Based Solutions
SCC-IRG 第 1 轨道:使用基于信息的集成多维解决方案通过参与社区促进智能和可持续旅行
- 批准号:
2125390 - 财政年份:2021
- 资助金额:
$ 21.95万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Learning, Driving Simulator-Based Modeling, and Computationally Tractable Dynamic Traffic Assignment
合作研究:统计学习、基于驾驶模拟器的建模以及计算可处理的动态交通分配
- 批准号:
1662692 - 财政年份:2017
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
Collaborative Research: Coordinated Real-Time Traffic Management based on Dynamic Information Propagation and Aggregation under Connected Vehicle Systems
协作研究:车联网系统下基于动态信息传播和聚合的协同实时交通管理
- 批准号:
1435866 - 财政年份:2014
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
Collaborative Research: Stochastic Sensing Control Models for Safe and Efficient Traffic Signal Strategies
合作研究:安全高效交通信号策略的随机传感控制模型
- 批准号:
0528225 - 财政年份:2005
- 资助金额:
$ 21.95万 - 项目类别:
Continuing Grant
Collaborative Research: A Multilayer Capital Budgeting Model for Comparative Analyses of Infrastructure Networks
协作研究:用于基础设施网络比较分析的多层资本预算模型
- 批准号:
0116342 - 财政年份:2001
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
CAREER: Efficient and Robust On-Line Control of Large-Scale Dynamic Traffic Systems with Information Systems
职业:利用信息系统对大规模动态交通系统进行高效、鲁棒的在线控制
- 批准号:
9702612 - 财政年份:1997
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Continuing Grant