GOALI: Microscale fundamentals of sweat evaporation

GOALI:汗液蒸发的微观基础

基本信息

  • 批准号:
    2214152
  • 负责人:
  • 金额:
    $ 45.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Sweating is important to human thermoregulation, thermal comfort, illness diagnosis, and hygiene product development. However, little is known about how droplets emerge and evaporate from our sweat glands. The scale of these phenomena is in-between molecular processes that drive sweat generation revealed by biochemists and macroscopic sweat rate measurements performed by physiologists. Engineers have studied evaporation across all these length scales but only in non-biological settings. This work will use three advanced imaging techniques to provide a unique view of droplets during various sweating stages. To identify the main physical mechanisms underlying sweat evaporation, high-resolution photographs and videos will be interpreted with theoretical modeling and additional experimentation with artificial sweating surfaces. These research outcomes will potentially impact diverse fields ranging from medical diagnostic development to energy-efficient building design. In addition, the work will inform the industrial partner how to more realistically mimic sweating using a thermal manikin. These devices are often used in apparel development and to optimize airflow for human thermal comfort in buildings and vehicles. The project will foster the academia-industry partnership with various joint activities and engage with the broader public through multimedia platforms and campus events. To systematically understand the role of various thermofluidic factors in different sweat evaporation modes, the project team proposes a two-pronged transdisciplinary approach that merges physiological and engineering perspectives. First, a new method will be developed to integrate ventilated capsule sweat rate measurements used routinely in physiology with multimodal imaging. Specifically, the team will use fast macro videography, mid-wave infrared thermography, and optical coherence tomography. A suite of non-invasive methods will be used to simultaneously measure sweat evaporation rate and visualize the corresponding microscale sweat dynamics at three skin sites. The team will study these processes under neutral, moderate, and strong thermal stimuli that will be asserted to induce out-of-pore, dropwise, and filmwise sweating modes. Second, the contributions of various factors to sweat evaporation through experimentation and modeling will be explored employing the same method but with artificial sweating surfaces with gradually increasing complexity. This knowledge will enable the formulation of reduced-order models of the out-of-pore, dropwise, and filmwise modes. In addition, imaging sweating onset and drying phases will deepen understanding of biological processes, including how sweat traverses through the duct to the skin and what happens to sweat on the surface once its secretion stops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
出汗对人体体温调节、热舒适、疾病诊断和卫生产品开发都很重要。然而,人们对水滴如何从我们的汗腺中出现和蒸发知之甚少。这些现象的规模介于生物化学家揭示的驱动汗液产生的分子过程和生理学家进行的宏观汗液速率测量之间。工程师们已经研究了所有这些长度尺度上的蒸发,但仅限于非生物环境。这项工作将使用三种先进的成像技术来提供不同出汗阶段液滴的独特视图。为了确定汗液蒸发的主要物理机制,高分辨率的照片和视频将通过理论建模和人工出汗表面的额外实验进行解释。这些研究成果将潜在地影响从医疗诊断发展到节能建筑设计的各个领域。此外,这项工作将告知工业合作伙伴如何使用暖体假人更真实地模拟出汗。这些设备通常用于服装开发,并优化建筑物和车辆中的人体热舒适气流。该项目将通过各种联合活动促进学校与行业的伙伴关系,并通过多媒体平台和校园活动与更广泛的公众接触。为了系统地了解各种热流体因素在不同汗液蒸发模式中的作用,项目团队提出了一种双管齐下的跨学科方法,融合了生理学和工程学的观点。首先,将开发一种新方法,将生理学中常规使用的通气胶囊出汗率测量与多模态成像相结合。具体来说,该团队将使用快速宏观摄像,中波红外热成像和光学相干断层扫描。一套非侵入性的方法将被用来同时测量汗液蒸发率和可视化相应的微尺度汗液动力学在三个皮肤部位。该团队将在中性,中等和强烈的热刺激下研究这些过程,这些热刺激将被断言为诱导孔外,滴状和膜状出汗模式。第二,通过实验和建模,探讨各种因素对汗液蒸发的贡献,采用相同的方法,但人工出汗表面逐渐增加的复杂性。这方面的知识将使降阶模型的孔外,逐滴,和filmwise模式的制定。此外,对出汗开始和干燥阶段的成像将加深对生物过程的理解,包括汗液如何通过导管到达皮肤,以及一旦分泌停止,汗液在表面会发生什么。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konrad Rykaczewski其他文献

Advanced human heat exposure sensing using two cylinder anemometer and radiometer: introducing CARla
  • DOI:
    10.1007/s00484-025-02860-4
  • 发表时间:
    2025-02-04
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Konrad Rykaczewski;Ankit Joshi;Shri H. Viswanathan;Emily Parkerson;Mahima Gupta;Michael Park;Isabella DeClair;Kambiz Sadeghi;Sylwester Wereski;Gokul Pathikonda;Jennifer K. Vanos;Ariane Middel
  • 通讯作者:
    Ariane Middel
Resolving shortwave and longwave irradiation distributions across the human body in outdoor built environments
解析户外建成环境中人体的短波和长波辐射分布
  • DOI:
    10.1016/j.buildenv.2025.112934
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Kambiz Sadeghi;Shri H. Viswanathan;Ankit Joshi;Lyle Bartels;Sylwester Wereski;Cibin T. Jose;Galina Mihaleva;Muhammad Abdullah;Ariane Middel;Konrad Rykaczewski
  • 通讯作者:
    Konrad Rykaczewski
Comparative analysis of thermoregulation models to assess heat strain in moderate to extreme heat
热调节模型的比较分析以评估中到极热环境中的热应激
  • DOI:
    10.1016/j.jtherbio.2024.104035
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Ankit Joshi;Bryce Twidwell;Michael Park;Konrad Rykaczewski
  • 通讯作者:
    Konrad Rykaczewski

Konrad Rykaczewski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konrad Rykaczewski', 18)}}的其他基金

LEAP-HI: Dynamic Sensing and Computational Approaches to Assess Individual-level Heat Risk Across Diverse Populations
LEAP-HI:动态传感和计算方法来评估不同人群的个体水平热风险
  • 批准号:
    2152468
  • 财政年份:
    2022
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a High Heat Compatible System for Interdisciplinary Research and Education on Human Thermal Exposure and Safety in Hot Climates
MRI:获取高热兼容系统,用于炎热气候下人体热暴露和安全的跨学科研究和教育
  • 批准号:
    2117917
  • 财政年份:
    2021
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing Enabled by Highly Tunable Multiphase Liquid Metal Pastes with Solid and Fluid Capsule Additives
合作研究:通过高度可调的多相液态金属浆料与固体和流体胶囊添加剂实现可扩展制造
  • 批准号:
    2032415
  • 财政年份:
    2021
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Standard Grant
EAGER: Fundamentals of soft heat exchangers
EAGER:软热交换器的基础知识
  • 批准号:
    1724452
  • 财政年份:
    2017
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Standard Grant

相似海外基金

Microscale radiography of hydrodynamic instabilities mitigation in magnetized high-density laser plasmas
磁化高密度激光等离子体中流体动力学不稳定性缓解的微尺度射线照相
  • 批准号:
    24K06988
  • 财政年份:
    2024
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design new-generation microscale thermoelectric device
设计新一代微型热电器件
  • 批准号:
    DE240101170
  • 财政年份:
    2024
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Discovery Early Career Researcher Award
Multi-Scale Experimental and Computational Investigation of Microscale Origins of Ductile Failure
延性破坏微观起源的多尺度实验和计算研究
  • 批准号:
    2334678
  • 财政年份:
    2024
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Standard Grant
Highly efficient microscale liquid handling and bio interfacing
高效的微量液体处理和生物界面
  • 批准号:
    FL230100023
  • 财政年份:
    2024
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Australian Laureate Fellowships
Development and Promotion of Teaching Materials for Inquiry Learning in Collaboration with Programming Education for Microscale Experiments
与微型实验编程教育合作的探究性学习教材的开发与推广
  • 批准号:
    23K02764
  • 财政年份:
    2023
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
  • 批准号:
    EP/Y004973/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Research Grant
Innovation of stimulus electrodes based on macro-microscale multiresolution surface control
基于宏观微观多分辨率表面控制的刺激电极创新
  • 批准号:
    23K19217
  • 财政年份:
    2023
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Microscale Radionuclide S-values for αRPT
αRPT 的微量放射性核素 S 值
  • 批准号:
    10713711
  • 财政年份:
    2023
  • 资助金额:
    $ 45.37万
  • 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
  • 批准号:
    10587627
  • 财政年份:
    2023
  • 资助金额:
    $ 45.37万
  • 项目类别:
Evaluation of novel microscale cell culture platform for translational drug development in prostate cancer
用于前列腺癌转化药物开发的新型微型细胞培养平台的评估
  • 批准号:
    10588604
  • 财政年份:
    2023
  • 资助金额:
    $ 45.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了