Collaborative Research: CNS Core: Large: Systems and Verifiable Metrics for Sustainable Data Centers

合作研究:CNS 核心:大型:可持续数据中心的系统和可验证指标

基本信息

  • 批准号:
    2215016
  • 负责人:
  • 金额:
    $ 36.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Data centers already contribute significantly to the global carbon footprint. However, the rise in popularity of resource-intensive Big Data and Machine Learning workloads is poised to make data center operations unsustainable. This project designs a suite of Sustainability Aware Software SYstems (SASSY) to enable "sustainable-by-design" data centers. SASSY focuses on sustainability holistically, considering the lifecycle carbon footprint of computing equipment, cleanliness of energy source, and device reliability. To measure per-job end-to-end sustainability costs, a full-stack measurement framework is developed. To involve end-users in sustainability efforts, new programming models and tools are designed to enable users to specify their sustainability and performance objectives. The metrics and models together guide SASSY to make wise data-center-wide sustainable management choices.The adoption of SASSY solutions leads to sustainability savings that benefit the society at large. Further, the SASSY programming models and tools allow developers to build more sustainable applications, enabling "sustainable-by-design" software development. Data center operators and industry partners can directly benefit from SASSY's open-source software and models, which are made public through the project Website: https://www.pace.cs.stonybrook.edu/sassy.html. The next generation of practitioners and researchers are taught to consider sustainability as a first-class metric via educational and mentoring opportunities that the project generates.This project was in response to and partially funded by Design for Sustainability in Computing (NSF-22-060)This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据中心已经对全球碳足迹做出了重大贡献。然而,资源密集型大数据和机器学习工作负载的普及将使数据中心运营变得不可持续。该项目设计了一套可持续性意识软件系统(SASSY),以实现“可持续设计”的数据中心。SASSY从整体上关注可持续性,考虑计算设备的生命周期碳足迹,能源清洁度和设备可靠性。为了衡量每项工作的端到端的可持续性成本,开发了一个全栈测量框架。为了让最终用户参与可持续性工作,设计了新的方案编制模式和工具,使用户能够具体说明其可持续性和业绩目标。这些指标和模型共同指导SASSY做出明智的数据中心范围的可持续管理选择。采用SASSY解决方案可以节省可持续性成本,造福整个社会。此外,SASSY编程模型和工具使开发人员能够构建更可持续的应用程序,从而实现“设计可持续”的软件开发。数据中心运营商和行业合作伙伴可以直接从SASSY的开源软件和模型中受益,这些软件和模型通过项目网站https://www.pace.cs.stonybrook.edu/sassy.html公开。通过该项目提供的教育和指导机会,下一代从业者和研究人员被教导将可持续性视为一流的指标。该项目是对计算可持续性设计的回应,并由该项目提供部分资金。(NSF-22-060)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu David Liu其他文献

VESTA: Power Modeling with Language Runtime Events
VESTA:使用语言运行时事件进行电源建模
Coqa: Concurrent Objects with Quantized Atomicity
Coqa:具有量化原子性的并发对象
  • DOI:
    10.1007/978-3-540-78791-4_18
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0.2
  • 作者:
    Yu David Liu;Xiaoqi Lu;Scott F. Smith
  • 通讯作者:
    Scott F. Smith
Variant-Frequency Semantics for Green Futures
绿色期货的变频语义
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu David Liu
  • 通讯作者:
    Yu David Liu
Toward Lazy Evaluation in a Graph Database
走向图数据库中的惰性评估
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeffrey Eymer;Philip Dexter;Yu David Liu
  • 通讯作者:
    Yu David Liu
Energy-efficient synchronization through program patterns
通过程序模式实现节能同步

Yu David Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu David Liu', 18)}}的其他基金

CNS Core: Small: Language Runtime Support for Energy-Aware Applications
CNS 核心:小型:对能源感知应用程序的语言运行时支持
  • 批准号:
    1910532
  • 财政年份:
    2019
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
CRI: CI-New: Collaborative Research: Extensible, Software Enabled Unmanned Aerial Vehicles
CRI:CI-New:协作研究:可扩展、软件支持的无人机
  • 批准号:
    1823260
  • 财政年份:
    2018
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
SHF: Small: Lazy Data Structures for Data-Intensive Applications
SHF:小型:适用于数据密集型应用程序的惰性数据结构
  • 批准号:
    1815949
  • 财政年份:
    2018
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
SHF: Small: Green Parallel Language Systems
SHF:小型:绿色并行语言系统
  • 批准号:
    1526205
  • 财政年份:
    2015
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
II: New: Collaborative Research: An Extensible Software Infrastructure for Unmanned Aerial Vehicles
II:新内容:协作研究:无人机的可扩展软件基础设施
  • 批准号:
    1512992
  • 财政年份:
    2015
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
CAREER: Programming Models for Green Software
职业:绿色软件编程模型
  • 批准号:
    1054515
  • 财政年份:
    2011
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 36.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了