CAREER: Programming Models for Green Software
职业:绿色软件编程模型
基本信息
- 批准号:1054515
- 负责人:
- 金额:$ 36.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Energy efficiency is a critical goal for modern computing: power consumption represents a significant portion of operational cost for data centers and cloud computing providers; wireless sensor networks are only effective when individual nodes do not deplete their power quickly after deployment; increasing battery life is high on the wish list of millions of laptop and smartphone users. Prior research on energy-efficient computing is largely focused on innovations in VLSI, architectures, operating systems, and compiler optimizations.This project explores how innovations in programming models can contribute to energy-efficient computing. A focus on programming models has the distinctive benefits of promoting application-specific energy reduction, ensuring high portability in heterogeneous computing platforms, and facilitating the development of maintainable green software. The project centers around the design of a novel programming system where characteristics in energy-aware programming--such as power modes--can be declared or inferred as types, over which a type system can reason rigorously and compositionally. Types can further guide standard energy reduction techniques such as dynamic voltage and frequency scaling, and be exploited for certifying program energy characteristics in the Internet era. The outcome of the project includes the design of an energy-aware language and a compiler with novel features for energy reduction and certification. The project also brings the awareness of energy efficiency into computer programming classes and fosters next-generation green-conscious programmers--the contributors of a more sustainable society.
能源效率是现代计算的关键目标:功耗是数据中心和云计算提供商运营成本的重要组成部分;无线传感器网络只有在部署后单个节点不会快速耗尽其电力时才有效;增加电池寿命是数百万笔记本电脑和智能手机用户的愿望清单。以往关于节能计算的研究主要集中在超大规模集成电路、架构、操作系统和编译器优化方面的创新。本项目探讨编程模型的创新如何有助于节能计算。对编程模型的关注具有促进特定于应用的能量减少、确保异构计算平台的高度可移植性以及促进主流绿色软件的开发的独特益处。该项目围绕着一个新颖的编程系统的设计,在该系统中,能量感知编程的特征(如电源模式)可以被声明或推断为类型,类型系统可以严格地和组合地推理。类型可以进一步指导标准的能量减少技术,如动态电压和频率缩放,并被用于在互联网时代认证程序的能量特性。该项目的成果包括设计一种能源感知语言和一种具有节能和认证新功能的编译器。该项目还将能效意识带入计算机编程课程,并培养下一代具有绿色意识的程序员----他们是更可持续社会的贡献者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu David Liu其他文献
VESTA: Power Modeling with Language Runtime Events
VESTA:使用语言运行时事件进行电源建模
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Joseph Raskind;Timur Babakol;Khaled Mahmoud;Yu David Liu - 通讯作者:
Yu David Liu
Coqa: Concurrent Objects with Quantized Atomicity
Coqa:具有量化原子性的并发对象
- DOI:
10.1007/978-3-540-78791-4_18 - 发表时间:
2008 - 期刊:
- 影响因子:0.2
- 作者:
Yu David Liu;Xiaoqi Lu;Scott F. Smith - 通讯作者:
Scott F. Smith
Variant-Frequency Semantics for Green Futures
绿色期货的变频语义
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yu David Liu - 通讯作者:
Yu David Liu
Toward Lazy Evaluation in a Graph Database
走向图数据库中的惰性评估
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Eymer;Philip Dexter;Yu David Liu - 通讯作者:
Yu David Liu
Energy-efficient synchronization through program patterns
通过程序模式实现节能同步
- DOI:
10.1109/greens.2012.6224253 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yu David Liu - 通讯作者:
Yu David Liu
Yu David Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu David Liu', 18)}}的其他基金
Collaborative Research: CNS Core: Large: Systems and Verifiable Metrics for Sustainable Data Centers
合作研究:CNS 核心:大型:可持续数据中心的系统和可验证指标
- 批准号:
2215016 - 财政年份:2022
- 资助金额:
$ 36.21万 - 项目类别:
Continuing Grant
CNS Core: Small: Language Runtime Support for Energy-Aware Applications
CNS 核心:小型:对能源感知应用程序的语言运行时支持
- 批准号:
1910532 - 财政年份:2019
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
CRI: CI-New: Collaborative Research: Extensible, Software Enabled Unmanned Aerial Vehicles
CRI:CI-New:协作研究:可扩展、软件支持的无人机
- 批准号:
1823260 - 财政年份:2018
- 资助金额:
$ 36.21万 - 项目类别:
Continuing Grant
SHF: Small: Lazy Data Structures for Data-Intensive Applications
SHF:小型:适用于数据密集型应用程序的惰性数据结构
- 批准号:
1815949 - 财政年份:2018
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
SHF: Small: Green Parallel Language Systems
SHF:小型:绿色并行语言系统
- 批准号:
1526205 - 财政年份:2015
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
II: New: Collaborative Research: An Extensible Software Infrastructure for Unmanned Aerial Vehicles
II:新内容:协作研究:无人机的可扩展软件基础设施
- 批准号:
1512992 - 财政年份:2015
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
相似海外基金
OAC Core: Transpass: Transpiling Parallel Task Graph Programming Models for Scientific Software
OAC 核心:Transpass:为科学软件转译并行任务图编程模型
- 批准号:
2349143 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
Using Fine-grained Programming Trace Data to Inform Disciplinary Models of Self-Regulated Learning in Computing Education
使用细粒度编程跟踪数据为计算机教育中的自我调节学习的学科模型提供信息
- 批准号:
2300612 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Continuing Grant
Using Fine-grained Programming Trace Data to Inform Disciplinary Models of Self-Regulated Learning in Computing Education
使用细粒度编程跟踪数据为计算机教育中的自我调节学习的学科模型提供信息
- 批准号:
2300613 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Continuing Grant
Support for programming education targeted for visually impaired children using three dimensional models
利用三维模型支持视障儿童的编程教育
- 批准号:
23K02587 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Models and Algorithms for Molecular Programming
分子编程模型和算法
- 批准号:
RGPIN-2022-03784 - 财政年份:2022
- 资助金额:
$ 36.21万 - 项目类别:
Discovery Grants Program - Individual
Stochastic dynamic programming for modelling and solving extended multivariate structural models
用于建模和求解扩展多元结构模型的随机动态规划
- 批准号:
RGPIN-2018-04432 - 财政年份:2022
- 资助金额:
$ 36.21万 - 项目类别:
Discovery Grants Program - Individual
OAC Core: Transpass: Transpiling Parallel Task Graph Programming Models for Scientific Software
OAC 核心:Transpass:为科学软件转译并行任务图编程模型
- 批准号:
2209957 - 财政年份:2022
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
- 批准号:
RGPIN-2017-05783 - 财政年份:2022
- 资助金额:
$ 36.21万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Differentiable Programming Models For Protein Structure Prediction And Modelling
利用可微分编程模型进行蛋白质结构预测和建模
- 批准号:
BB/W008556/1 - 财政年份:2022
- 资助金额:
$ 36.21万 - 项目类别:
Research Grant
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
- 批准号:
2103791 - 财政年份:2021
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant














{{item.name}}会员




