MRI: Acquisition of a Plasma Focused Ion Beam System for Dynamic In-situ Micro-Mechanical Testing Over Cryogenic and Elevated Temperatures

MRI:获取等离子体聚焦离子束系统,用于低温和高温动态原位微机械测试

基本信息

  • 批准号:
    2215267
  • 负责人:
  • 金额:
    $ 129.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Direct observation of deformation behavior at the micro/nano scales can lead to significant advances in our understanding of the deformation mechanisms in materials by correlating microstructural changes with load-displacement characteristics. For example, the propagation of a crack-tip that would lead to a catastrophic failure of a component, or deformation/temperature-induced phase transformations and crystallinity changes are important processing phenomena that can lead to failure in materials. The plasma focused ion beam (FIB) in this project allows researchers to efficiently extract samples from specific sites of interest in materials for micromechanical testing, which can be performed using a state-of-the-art micromechanical testing device integrated within the same FIB instrument. It is possible to observe both microstructural and crystallographic changes that occur during deformation using this system, and these changes can be directly correlated with localized stress-strain data. The equipment will benefit a wide variety of funded research activities at Lehigh across sectors of materials science ranging from ceramics, metals/alloys, 3D-printed materials, polymers and biomaterials. In addition, the rapid material removal rate achievable in the plasma FIB accelerates the fabrication of a wide range of nanostructures such as tooling for micro/nano injection molding, as well as enable large-scale internal characterization of various samples including highly sensitive biomaterials and soft polymers at cryogenic temperatures. The instrument also supports research projects from other universities, government labs and industry through liaison programs already established at Lehigh. The techniques and knowledge developed using this system are shared with Lehigh students as well as numerous industry/government attendees of the Lehigh Microscopy Schools. The system as specified consists of (1) a plasma focused ion beam (FIB) instrument, integrated with (2) a state-of-the-art in-situ micromechanical testing device with testing capability over a wide temperature range and (3) a high speed electron backscattered diffraction (EBSD) camera. The system will be able to simultaneously acquire many types of data, including highly sensitive transmission Kikuchi diffraction patterns, during mechanical testing. The rapid milling rate of the Xe-ion based plasma FIB, which is ~10–100 times greater than conventional Ga-ion systems, markedly increases the fabrication throughput of micromechanical test samples, and hence addresses what is currently a severe limitation, namely the ability to test a statistically significant number of samples. In-situ mechanical testing within the FIB at temperatures from minus 130 to 1000 degrees C will enable the correlation of deformation processes (such as slip and microcrack/void nucleation) with microstructural features at the nm scale. Furthermore, the load-displacement signals can be sampled at 1.2 MHz, which is much faster than the typical frame rates encountered in SEM imaging. This information will be complemented by digital image correlation, which will be used to quantify localized deformation. These capabilities are highly advantageous, but what makes the requested instrumentation truly unique is the ability to simultaneously extract real time EBSD data during mechanical testing, which is made possible by a novel test platform geometry. Moreover, the efficiency of serial cross-sectioning for the characterization of multi-component materials, as well as specific features such as interfaces and boundaries in materials and devices, is improved tremendously. The sample sectioning capability at cryogenic temperatures is especially useful for cross-sectional observation of soft materials such as polymers and biological samples, and for thin-specimen preparation to allow more detailed observation in a transmission electron microscope.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
直接观察微/纳米尺度上的变形行为可以通过将微结构变化与负载置换特性相关联,从而导致我们对材料中变形机制的理解的显着进步。例如,裂纹尖端的传播将导致组件的灾难性失败,或变形/温度引起的相变和结晶度变化是重要的处理现象,可能导致材料失败。该项目中的血浆浓缩离子束(FIB)允许研究人员从相同的FIB仪器中集成的最先进的微机械测试装置进行微电测试的材料中有效提取样品。可以观察使用该系统变形过程中发生的微观结构和晶体学变化,并且这些变化可以与局部应力 - 应变数据直接相关。设备将使Lehigh的各种资助研究活动受益于材料科学领域,包括陶瓷,金属/合金,3D打印材料,聚合物和生物材料。此外,在血浆FIB中可实现的快速材料去除率可以加速各种纳米结构的结构,例如用于微/纳米注塑成型的工具,以及在酸sryogenic温度下的各种样品的大规模内部表征,包括高度敏感的生物材料和软聚合物。该工具还通过在Lehigh建立的联络计划来支持其他大学,政府实验室和行业的研究项目。使用该系统开发的技术和知识与Lehigh的学生以及Lehigh显微镜学校的众多行业/政府参与者共享。指定的系统由(1)浓缩的离子束(FIB)仪器组成,该仪器与(2)具有(2)具有测试能力的最先进的现场微机械测试设备在广泛的温度范围内以及(3)高速电子反向散射衍射(EBSD)摄像头。在机械测试期间,该系统将能够轻松地获取许多类型的数据,包括高度敏感的kikuchi衍射模式。基于Xe-Ion的等离子FIB的快速铣削速率比常规GA-ION系统高约10-100倍,显着增加了微机械测试样品的制造吞吐量,因此解决了当前严重限制的问题,即具有统计上大量样品的能力。在从负130至1000度的温度下,FIB内的原位机械测试将使变形过程(例如滑移和微裂纹/无效成核)与NM等级的微结构特征相关。此外,可以在1.2 MHz下采样负载置换信号,该信号比SEM成像中遇到的典型帧速率要快得多。该信息将通过数字图像相关性完成,该相关将用于量化局部变形。这些功能具有很高的优势,但是使请求的仪器真正独特的是能够在机械测试期间简单地提取实时EBSD数据的能力,这是通过新颖的测试平台几何形状实现的。此外,串行横截面对多组分材料表征的表征以及材料和设备中界面和边界等特定特征的效率得到了极大的提高。低温温度下的样品切片能力对于诸如聚合物和生物学样品等柔软材料的横截面观察特别有用,对于薄特性准备,可以在传输电子显微镜中进行更详细的观察。该奖项反映了NSF的法定任务,并通过使用基础的智力效果和广泛的评估来评估,这是NSF的法定任务,并被认为是宝贵的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helen Chan其他文献

Lead poisoning from ingestion of Chinese herbal medicine.
摄入中草药导致铅中毒。
  • DOI:
  • 发表时间:
    1977
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Helen Chan;Y. Yeh;G. Billmeier;W. Evans;Ho Chan
  • 通讯作者:
    Ho Chan
Real world implementation of ACP perspective from Japan
日本 ACP 视角的现实世界实施
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin;C. P.;Cheng;S. Y.;Mori;M.;Suh;S. Y.;Chan;H. Y.;Martina;D.;. . . Chiu;T. Y.;Raymond Ng Han Lip;Helen Chan;Rachelle Bernacki;Cheng-Pei Lin;Yoshiyuki Kizawa
  • 通讯作者:
    Yoshiyuki Kizawa
Prognostication: How to communicate prognosis and future research direction.
预测:如何传达预测和未来的研究方向。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin;C. P.;Cheng;S. Y.;Mori;M.;Suh;S. Y.;Chan;H. Y.;Martina;D.;. . . Chiu;T. Y.;Raymond Ng Han Lip;Helen Chan;Rachelle Bernacki;Cheng-Pei Lin;Yoshiyuki Kizawa;Takenouchi Sayaka.;Masanori Mori;Masanori Mori;Masanori Mori
  • 通讯作者:
    Masanori Mori
Application of serious illness care program in hospital setting in Hong Kong
严重疾病护理计划在香港医院环境中的应用
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin;C. P.;Cheng;S. Y.;Mori;M.;Suh;S. Y.;Chan;H. Y.;Martina;D.;. . . Chiu;T. Y.;Raymond Ng Han Lip;Helen Chan
  • 通讯作者:
    Helen Chan
Palliative Care and COVID-19 in Japan. International panel: Lesson learned and health system development.
日本的姑息治疗和 COVID-19。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin;C. P.;Cheng;S. Y.;Mori;M.;Suh;S. Y.;Chan;H. Y.;Martina;D.;. . . Chiu;T. Y.;Raymond Ng Han Lip;Helen Chan;Rachelle Bernacki;Cheng-Pei Lin;Yoshiyuki Kizawa;Takenouchi Sayaka.
  • 通讯作者:
    Takenouchi Sayaka.

Helen Chan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helen Chan', 18)}}的其他基金

Solid Solution Enhanced Synthesis of Multi-Principal Component Alloys via Oxide Reduction
通过氧化物还原固溶强化合成多主成分合金
  • 批准号:
    2217692
  • 财政年份:
    2022
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Standard Grant
Single Crystal Growth by Solid State Reaction Synthesis: Informatics Driven Microstructural Analysis and Design
固态反应合成单晶生长:信息学驱动的微观结构分析与设计
  • 批准号:
    1929263
  • 财政年份:
    2019
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Continuing Grant
Mechanical Behavior of Novel Metal-Oxide Composites with Hierachical Microstructures: Effect of Scale and Interfacial Structure
具有分级微观结构的新型金属氧化物复合材料的力学行为:尺度和界面结构的影响
  • 批准号:
    1507955
  • 财政年份:
    2015
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Continuing Grant
FRG: Nanopatterning of Sapphire Substrates for Improved III-Nitride Growth
FRG:蓝宝石衬底的纳米图案化以改善 III 族氮化物的生长
  • 批准号:
    0705299
  • 财政年份:
    2007
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Continuing Grant
Generation of a Pristine Sapphire Surface by Oxidation and Solid State Conversion of a Sputtered Al Coating
通过溅射铝涂层的氧化和固态转化生成原始蓝宝石表面
  • 批准号:
    0211078
  • 财政年份:
    2002
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Continuing Grant
Novel Platelet Composites for Improved Mechanical Behavior
用于改善机械性能的新型血小板复合材料
  • 批准号:
    9616668
  • 财政年份:
    1997
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Continuing Grant
Influence of Temperature on Indentation-Induced Flaw Nucleation Processes in Ceramic Materials
温度对陶瓷材料压痕诱导缺陷成核过程的影响
  • 批准号:
    8920844
  • 财政年份:
    1990
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Continuing Grant

相似国自然基金

氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
  • 批准号:
    32371616
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
  • 批准号:
    52374316
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社区获得性MRSA家庭传播动态及干预措施的Ross-Macdonald动力学模型仿真研究
  • 批准号:
    82360657
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
线粒体三羧酸循环酶入核调控小鼠二细胞期全能性获得的功能和机制研究
  • 批准号:
    32300608
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
核糖体蛋白RPL35A调节FOXO1与SIRT2乙酰化解离诱导自噬促进非小细胞肺癌发生发展及获得性耐药的机制研究
  • 批准号:
    82360461
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
  • 批准号:
    2320040
  • 财政年份:
    2023
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Standard Grant
MRI: Track 1: Acquisition of an Inductively Coupled Plasma Mass Spectrometer to Quantify Trace Metal Ions Enabling New Research and Research Training at Barnard College
MRI:轨道 1:购买电感耦合等离子体质谱仪来量化痕量金属离子,从而在巴纳德学院实现新的研究和研究培训
  • 批准号:
    2320054
  • 财政年份:
    2023
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Standard Grant
Equipment: MRI Track 1: Acquisition of a Laser Ablation Time of Flight Inductively-Coupled Plasma Mass Spectrometer for UCSB Researchers and Educators
设备:MRI 轨道 1:为 UCSB 研究人员和教育工作者购买激光烧蚀飞行时间电感耦合等离子体质谱仪
  • 批准号:
    2320389
  • 财政年份:
    2023
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a State-of-the-Art Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM)
设备: MRI:轨道 1 采购最先进的等离子体聚焦离子束扫描电子显微镜 (PFIB-SEM)
  • 批准号:
    2320773
  • 财政年份:
    2023
  • 资助金额:
    $ 129.83万
  • 项目类别:
    Standard Grant
Robust, Contrast-Free Functional Renal MRI
稳健、无对比的功能性肾脏 MRI
  • 批准号:
    10578551
  • 财政年份:
    2023
  • 资助金额:
    $ 129.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了