CBET-EPSRC: Deep Learning Closure Models for Large-Eddy Simulation of Unsteady Aerodynamics
CBET-EPSRC:用于非定常空气动力学大涡模拟的深度学习收敛模型
基本信息
- 批准号:2215472
- 负责人:
- 金额:$ 36.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Computational simulations increasingly enable the design of lighter, more efficient, and higher-performance flight vehicles. Current computational capabilities have successfully aided many advances in aerospace design, but challenges remain in the selection of the models used to represent turbulence. Due to practical limits on computing resources, computational simulations for engineering design typically neglect the intricate features of turbulence. The models used to approximate the missing physics contain parameters that must be calibrated to data, which is challenging for unknown flows. Simple mathematical forms in these models limit their accuracy. Recently, efficient numerical methods to calibrate the parameters of complex models during flow simulations have been developed using techniques from machine learning and constrained optimization. These methods have been successful for simple turbulent flows but have not been applied to the complex flows encountered in aerodynamics. The principal objective of this project is to develop methods by which to calibrate turbulence models for simulations of practical aerodynamic flows, which will enhance their predictive accuracy for challenging configurations. The optimization methods to be developed will be broadly applicable across engineering fields, not limited to aerodynamics, and will be made publicly available in an open-source, high-performance software package.This project will address the need for accurate, efficient computational fluid dynamics models by developing deep learning closures and optimization methods for large-eddy simulations of turbulent separated and recirculating flows. The models will be optimized over the compressible Navier–Stokes equations using an adjoint-based approach, which will enable efficient data assimilation by avoiding the need to construct high-dimensional gradients. The resulting models will enable significant accuracy improvements compared to state-of-the-art models for comparable cost, or equivalently, significantly reduced computational cost for comparable accuracy. High-fidelity numerical datasets for several wake geometries and separated airfoil flows will be generated as target data for the optimization procedure. Additionally, a new class of online optimization methods will be developed to enable dynamic, data-free closure models that will learn directly from the governing equations, and a hybrid, multiscale deep learning formulation will be developed to model near-wall turbulent flows. The scientific community more broadly is interested in leveraging large datasets and machine learning techniques; this project therefore has potential to develop methods to be widely adopted across disciplines. The resulting algorithms, methods, datasets, and codes will be disseminated to foster adoption within the aerodynamics community and across scientific disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算模拟越来越多地使设计更轻、更高效、更高性能的飞行器成为可能。目前的计算能力已经成功地促进了航空航天设计的许多进步,但在用于表示湍流的模型的选择上仍然存在挑战。由于实际计算资源的限制,工程设计的计算模拟通常忽略了湍流的复杂特征。用于近似缺失物理的模型包含必须校准到数据的参数,这对于未知流动来说是具有挑战性的。这些模型中简单的数学形式限制了它们的准确性。近年来,利用机器学习和约束优化技术,已经开发出了在流动模拟过程中校准复杂模型参数的有效的数值方法。这些方法对于简单的湍流是成功的,但还没有应用于空气动力学中遇到的复杂流动。该项目的主要目标是开发用于实际气动流动模拟的湍流模型的校准方法,这将提高它们对具有挑战性的构型的预测精度。将开发的优化方法将广泛应用于工程领域,不限于空气动力学,并将以开放源代码的高性能软件包公开提供。该项目将通过开发用于湍流分离和再循环流动的大涡模拟的深度学习闭包和优化方法来满足对准确、高效的计算流体力学模型的需求。模式将在可压缩的Navier-Stokes方程上使用基于伴随的方法进行优化,这将通过避免构造高维梯度来实现有效的数据同化。与最先进的模型相比,所得到的模型将在可比成本下显著提高精确度,或者在可比精确度的情况下显著降低计算成本。几种尾迹几何形状和分离翼型流动的高保真数值数据集将被生成作为优化过程的目标数据。此外,还将开发一类新的在线优化方法,以实现直接从控制方程学习的动态、无数据闭合模型,并将开发一种混合的多尺度深度学习公式来模拟近壁湍流。科学界更广泛地对利用大数据集和机器学习技术感兴趣;因此,该项目有可能开发出跨学科广泛采用的方法。由此产生的算法、方法、数据集和代码将被传播,以促进在空气动力学社区和跨科学学科的采用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep learning closure models for large-eddy simulation of flows around bluff bodies
用于钝体周围流动大涡流模拟的深度学习闭合模型
- DOI:10.1017/jfm.2023.446
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Sirignano, Justin;MacArt, Jonathan F.
- 通讯作者:MacArt, Jonathan F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan MacArt其他文献
Jonathan MacArt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan MacArt', 18)}}的其他基金
CAREER: Embedded Data Assimilation for Complex Turbulent Reacting Flows
职业:复杂湍流反应流的嵌入式数据同化
- 批准号:
2236904 - 财政年份:2023
- 资助金额:
$ 36.3万 - 项目类别:
Continuing Grant
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 36.3万 - 项目类别:
Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
- 批准号:
EP/Y032489/1 - 财政年份:2024
- 资助金额:
$ 36.3万 - 项目类别:
Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 36.3万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 36.3万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 36.3万 - 项目类别:
Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 36.3万 - 项目类别:
Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 36.3万 - 项目类别:
Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
- 批准号:
EP/Z531182/1 - 财政年份:2024
- 资助金额:
$ 36.3万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 36.3万 - 项目类别:
Research Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
- 批准号:
EP/Y032942/1 - 财政年份:2024
- 资助金额:
$ 36.3万 - 项目类别:
Research Grant