Exploring Students’ Data Science Learning and Participation through Engagement with Authentic, Messy Data at DataFest

探索学生 — 通过在 DataFest 上接触真实、混乱的数据来学习和参与数据科学

基本信息

  • 批准号:
    2216023
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project aims to serve the national interest by supporting the development of undergraduate students’ data literacy skills and by promoting the inclusion of historically marginalized students in data science. It will do so by studying DataFest, a rapidly growing national co-curricular data competition with over 2000 participants from over 100 institutions annually. DataFest is an opportunity for students to work collaboratively with authentic datasets over two intense days. As technology and computing power continue to rapidly advance, it is critical to ensure undergraduate students have the skills to work with and make sense of large, messy datasets. This project aims to develop a deeper and more fundamental understanding of how students work with and think about these types of data, and how they work together to bring their other expertise to bear in investigating these types of datasets. It is also crucial to ensure that these skills are developed equitably. Although the traditional competitive hackathon model has been found to be exclusionary to marginalized students, there are several aspects of the DataFest design that may better foster inclusion, such as more opportunities for collaboration and socially relevant tasks. Thus, this project will also seek to understand who currently does and does not participate in DataFest and why. This will be done to understand how DataFest can be leveraged as an opportunity to make data science more accessible, engaging, and welcoming to all.The scope of this project includes collecting data from multiple DataFest sites in order to (1) better understand how undergraduate students navigate big, messy, authentic data and, in particular, how they draw on interdisciplinary resources in doing so; and (2) examine who participates in DataFest and why, in order to explore how DataFest can potentially be a vehicle for broadening participation both in data science as a discipline and in fostering the development of data literacy for students across disciplines. The investigators will use mixed-methods and multimodal data streams that include surveys, interviews with DataFest teams, focus groups with site organizers, close observations and video recordings of teams working, and video recordings of final presentations. This project will develop (1) rich, detailed descriptions of (a) ways in which teams draw on interdisciplinary reasoning in the context of DataFest, (b) phases of the Data Investigation Process that benefit from interdisciplinary thinking, and (c) challenges of messy, authentic data that provide entry points for interdisciplinary thinking to become woven into the solution. This project will also develop (2) a survey instrument that can begin to assess openness to interdisciplinary thinking; and (3) initial insights into broadening participation in STEM through co-curricular events like DataFest. Findings will be disseminated to participating sites, the larger DataFest community, as well as to the broader field of STEM and data science education. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过支持本科生数据素养技能的发展和促进将历史上被边缘化的学生纳入数据科学来服务于国家利益。它将通过研究Datafest来做到这一点,Datafest是一个迅速发展的全国性联合课程数据竞赛,每年有来自100多个机构的2000多名参与者。Datafest为学生提供了一个机会,让他们在两天的紧张时间内协作处理真实的数据集。随着技术和计算能力的持续快速发展,确保本科生拥有处理和理解庞大、混乱的数据集的技能至关重要。这个项目的目的是加深对学生如何使用和思考这些类型的数据,以及他们如何合作来利用他们的其他专业知识来研究这些类型的数据集的更深层次和更基本的理解。确保这些技能得到公平发展也是至关重要的。尽管传统的竞争性黑客松模式被发现对被边缘化的学生是排他性的,但Datafest设计的几个方面可能会更好地促进包容性,例如更多的合作机会和与社会相关的任务。因此,该项目还将设法了解目前谁参与和不参与Datafest,以及为什么。该项目的范围包括从多个Datafest站点收集数据,以便(1)更好地了解本科生如何浏览大量、杂乱、真实的数据,尤其是他们如何利用跨学科的资源;(2)检查谁参与了Datafest,为什么参加,以探索Datafest如何潜在地成为一种工具,扩大对作为一门学科的数据科学的参与,并促进学生跨学科的数据素养的发展。调查人员将使用混合方法和多模式数据流,包括调查、与Datafest团队的访谈、与现场组织者的焦点小组、团队工作的近距离观察和视频记录,以及最终演示的视频记录。该项目将开发(1)丰富、详细的描述(A)团队在Datafest的背景下利用跨学科推理的方式,(B)受益于跨学科思维的数据调查过程的阶段,以及(C)为跨学科思维提供切入点的杂乱无章的真实数据的挑战。该项目还将开发(2)一种调查工具,可以开始评估跨学科思维的开放性;以及(3)通过Datafest等联合课程活动扩大STEM参与的初步见解。调查结果将传播到参与站点、更大的Datafest社区以及更广泛的STEM和数据科学教育领域。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生的STEM教育的有效性。通过参与的学生学习路径,该计划支持有前景的实践和工具的创建、探索和实施。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Studying Interdisciplinary Thinking about Complex Real-World Data at DataFest
在 DataFest 上研究复杂现实世界数据的跨学科思维
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jessica Karch其他文献

Learning Clinical and Cultural Empathy: A Call for a Multidimensional Approach to Empathy-Focused Psychotherapy Training
学习临床和文化同理心:呼吁采用多维方法进行以同理心为中心的心理治疗培训
  • DOI:
    10.1007/s10879-022-09541-y
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    H. Levitt;Kathleen M. Collins;Zenobia Morrill;Kaitlyn R Gorman;Bediha Ipekci;Lauren M. Grabowski;Jessica Karch;Kathryn D. Kurtz;Raúl Orduña Picón;Arazeliz Reyes;Akansha Vaswani;Brianna Wadler
  • 通讯作者:
    Brianna Wadler

Jessica Karch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Community, Identity, and Competence: Supporting Low-Income Students in Computing and the Data Sciences at the University of Connecticut
社区、身份和能力:支持康涅狄格大学计算机和数据科学领域的低收入学生
  • 批准号:
    2322495
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Big Data Analytics Emerging Scholar (e-Scholar) Program for Minority Students
少数民族学生大数据分析新兴学者(e-Scholar)计划
  • 批准号:
    10554786
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Collaborative Research: Integrating Students’ Interests, Identities and Ways of Knowing with Network Visualization Tools to Explore Data Literacy Concepts
协作研究:将学生的兴趣、身份和认知方式与网络可视化工具相结合,探索数据素养概念
  • 批准号:
    2241706
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cybertraining to Develop FAIR Data Competencies for Bioengineering Students
合作研究:网络培训:试点:通过网络培训为生物工程学生培养公平数据能力
  • 批准号:
    2321121
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Designing Learning Technology Environments for Middle School Students to Analyze and Interpret Data Visualizations
为中学生设计学习技术环境来分析和解释数据可视化
  • 批准号:
    2327465
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Promoting Students' Data Literacy through the Creation of Interactive Multimodal Representations of Biometric Data
通过创建生物识别数据的交互式多模态表示来提高学生的数据素养
  • 批准号:
    2241751
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NRT-AI: Data in Engineering and Society: Converging Applications, Research, and Training Enhancements for Students
NRT-AI:工程和社会中的数据:融合应用、研究和学生培训增强
  • 批准号:
    2244574
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Students’ Interests, Identities and Ways of Knowing with Network Visualization Tools to Explore Data Literacy Concepts
协作研究:将学生的兴趣、身份和认知方式与网络可视化工具相结合,探索数据素养概念
  • 批准号:
    2241705
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cybertraining to Develop FAIR Data Competencies for Bioengineering Students
合作研究:网络培训:试点:通过网络培训为生物工程学生培养公平数据能力
  • 批准号:
    2321122
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A Model Program to Engage Students in Authentic, Technology-Infused Coastal Research and Monitoring: Building Student Data Literacy and Career Competency through Partnership
让学生参与真实、技术注入的沿海研究和监测的示范项目:通过合作培养学生的数据素养和职业能力
  • 批准号:
    2148520
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了