MRI: Acquisition of a Characterization Station for Next Generation Multifunctional Quantum Devices and Systems

MRI:采购下一代多功能量子设备和系统的表征站

基本信息

  • 批准号:
    2216293
  • 负责人:
  • 金额:
    $ 23.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Quantum technology is poised to enable an abrupt change (or a quantum leap) in human capability for computing, communications, and sensing. Scaling up quantum systems, or in other words, increasing computational space, communication distance and measurement sensitivity, is the key for the success of real applications. Integrating quantum photonic components onto a single platform, significantly reduces the size, weight, power, and cost (SWaP-C), while simultaneously enhancing the power and phase stability, scalability, and manufacturability. Photonics is viewed as an enabling technology for quantum applications. Photonic integrated circuits (PICs) technology offers several critical advantages and provides a versatile testbed for quantum experiments and resources for measurement-based quantum computing, high-dimensional entanglement, quantum communications, quantum information processing and quantum machine learning. Many applications, such as quantum simulators, machine learning, and graph-based computation have a natural implementation by quantum photonics. Furthermore, photonics serves as a tool by which theoretical predictions of topological phenomena can be tested, which has led to the rapid development of topological phases of matter. Topology has also contributed to the growth of photonics by enabling its robust control, even for imperfect devices, and by promoting practical devices for applications in telecommunications, metrology, sensing and processing. As quantum devices and systems are transitioning from theory to practice, and there is a growing interest from research institutions and the private sector, the shortage of skilled scientist and engineers has been identified. Hence, it is not difficult to overemphasize the importance of a solid background in these technologies and the hands-on experience of future science and engineering graduates. An increasing role of technological innovations in local and global economies, and growing competition among technologically advanced nations, makes student training in quantum devices and systems field vital for the US in 21st century. The objective of this MRI is the acquisition of a unique state-of-the-art automated photonics alignment/probe station with a high brightness Photon-Pair source and a dual channel Ultra-low-noise Photon Counter that will enable the characterization of quantum devices and systems. It will enable optical and electronic measurements of multiport quantum devices and systems, thus, addressing the needs for reliable and repeatable measurements, while at the same time minimizing alignment related losses, which are of critical importance in quantum experiments. The characterization of quantum devices in the early stage of the development is critical for their further optimization, as it provides important feedback that allow for device improvements. The characterization station will enable unique measurement capabilities to faculty, researchers, and students at CCNY and will complement fabrication facilities and modeling and simulation capabilities available to the CCNY community. The project will provide opportunities for training to the diverse graduate and undergraduate student body at CCNY, where many of the students are from underrepresented groups. The students will gain experience on the entire spectrum of design-fabrication-testing and characterization of integrated quantum photonic devices. We anticipate that the facility will attract researchers beyond CCNY and will foster further collaborations, which can lead to more scientific interaction and exchange of ideas among the participating researchers. Finally, small/medium size businesses may benefit in the development of their products, by getting access to the proposed system and through collaborative efforts. This will enable the generation of important knowhow and transfer of knowledge from/to CCNY, training of students and development of new scientific knowledge and products that will benefit the US economy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术有望使人类的计算、通信和传感能力发生突变(或量子飞跃)。 扩大量子系统的规模,或者换句话说,增加计算空间,通信距离和测量灵敏度,是真实的应用成功的关键。将量子光子器件集成到单个平台上,可以显著降低尺寸、重量、功率和成本(SWaP-C),同时增强功率和相位稳定性、可扩展性和可制造性。光子学被认为是量子应用的一种使能技术。光子集成电路(PIC)技术提供了几个关键优势,并为量子实验提供了多功能的测试平台,为基于测量的量子计算,高维纠缠,量子通信,量子信息处理和量子机器学习提供了资源。许多应用,如量子模拟器,机器学习和基于图形的计算,都可以通过量子光子学自然实现。此外,光子学还可以作为测试拓扑现象理论预测的工具,这导致了物质拓扑相的快速发展。拓扑结构也有助于光子学的发展,即使是不完美的设备,也能实现强大的控制,并促进电信,计量,传感和处理应用的实用设备。 随着量子设备和系统从理论转向实践,研究机构和私营部门的兴趣越来越大,熟练的科学家和工程师的短缺已经被确定。 因此,不难过分强调这些技术的坚实背景和未来科学和工程毕业生的实践经验的重要性。 技术创新在地方和全球经济中的作用越来越大,技术先进国家之间的竞争越来越激烈,这使得学生在量子设备和系统领域的培训对美国在21世纪至关重要。 该MRI的目标是获得一个独特的最先进的自动光子对准/探针站,具有高亮度光子对源和双通道超低噪声光子计数器,这将使量子设备和系统的表征成为可能。 它将实现多端口量子设备和系统的光学和电子测量,从而满足可靠和可重复测量的需求,同时最大限度地减少对准相关的损耗,这在量子实验中至关重要。 在开发的早期阶段对量子器件进行表征对于它们的进一步优化至关重要,因为它提供了重要的反馈,可以改进器件。该表征站将为CCNY的教师、研究人员和学生提供独特的测量能力,并将补充CCNY社区可用的制造设施和建模与仿真能力。 该项目将为CCNY的多样化研究生和本科生提供培训机会,其中许多学生来自代表性不足的群体。 学生将获得设计-制造-测试和集成量子光子器件表征的整个光谱的经验。我们预计,该设施将吸引CCNY以外的研究人员,并将促进进一步的合作,这可以导致更多的科学互动和参与研究人员之间的思想交流。最后,中小型企业可以通过获得所建议的系统并通过协作努力,在其产品的开发中受益。 这将使重要的专有技术的产生和知识的转移从/到CCNY,学生的培训和新的科学知识和产品的发展,将有利于美国经济。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Madamopoulos其他文献

Quantification of energy savings from dynamic solar radiation regulation strategies in office buildings
  • DOI:
    10.1016/j.enbuild.2016.04.022
  • 发表时间:
    2016-06-15
  • 期刊:
  • 影响因子:
  • 作者:
    Alex Vlachokostas;Nicholas Madamopoulos
  • 通讯作者:
    Nicholas Madamopoulos

Nicholas Madamopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Madamopoulos', 18)}}的其他基金

Collaborative Research: Smart prismatic-louver technology for enhanced daylighting and management of thermal loads in green buildings
合作研究:智能棱柱百叶窗技术可增强绿色建筑的采光和热负荷管理
  • 批准号:
    1505603
  • 财政年份:
    2015
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
IUCRC for Metamaterials
IUCRC 超材料
  • 批准号:
    1068028
  • 财政年份:
    2011
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Continuing Grant
A cost effective migration path to a fully packet based hybrid fixed/mobile backhaul infrastructure
完全基于数据包的混合固定/移动回程基础设施的经济高效的迁移路径
  • 批准号:
    0901563
  • 财政年份:
    2009
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Continuing Grant

相似海外基金

MRI: Track 1 Acquisition of a Desktop SEM-EDS for Advanced Material and Biological Characterization
MRI:轨道 1 获取用于先进材料和生物表征的台式 SEM-EDS
  • 批准号:
    2320428
  • 财政年份:
    2023
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1: Acquisition of a Zeiss 560 VP FE-SEM for chemical and surface characterization and training.
设备:MRI:轨道 1:购买 Zeiss 560 VP FE-SEM,用于化学和表面表征和培训。
  • 批准号:
    2320480
  • 财政年份:
    2023
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
Equipment: MRI Track 1: Acquisition of an integrated physical property measurement system for the electrical, optical, and magnetic characterization of materials
设备:MRI 轨道 1:获取用于材料电学、光学和磁性表征的集成物理特性测量系统
  • 批准号:
    2319964
  • 财政年份:
    2023
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of High-Resolution Multichannel Electrical Resistivity Imaging System for Sub-Soil Characterization
MRI:第 1 轨采集高分辨率多通道电阻率成像系统,用于地下土壤表征
  • 批准号:
    2320057
  • 财政年份:
    2023
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Aerosol Characterization System for the Caribbean and the Americas
MRI:获取加勒比和美洲气溶胶表征系统
  • 批准号:
    2215875
  • 财政年份:
    2022
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a MALDI Tandem Mass Spectrometer (MALDI MS/MS) for Imaging, Biological Research and Chemical Materials Characterization
MRI:购买 MALDI 串联质谱仪 (MALDI MS/MS) 用于成像、生物研究和化学材料表征
  • 批准号:
    2215823
  • 财政年份:
    2022
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a field emission scanning electron microscope to expand characterization capabilities at the University of Iowa
MRI:购买场发射扫描电子显微镜以扩展爱荷华大学的表征能力
  • 批准号:
    2215495
  • 财政年份:
    2022
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of High Power and Resolution X-ray Microscopy System for Advanced Characterization, Non-Destructive Evaluation, and Cross-Disciplinary Research & Innovation
MRI:采购高功率和分辨率 X 射线显微镜系统,用于高级表征、无损评估和跨学科研究
  • 批准号:
    2216175
  • 财政年份:
    2022
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a LC-High Resolution Mass Spectrometer for Characterization of Environmental Organic Contaminants
MRI:购买 LC 高分辨率质谱仪来表征环境有机污染物
  • 批准号:
    2117239
  • 财政年份:
    2021
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an advanced scanning electron microscope for in situ and in operando materials characterization and education
MRI:购买先进的扫描电子显微镜,用于原位和操作材料表征和教育
  • 批准号:
    2117602
  • 财政年份:
    2021
  • 资助金额:
    $ 23.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了