Using Machine Learning to Provide Students with Rapid Feedback during Hands-on Cybersecurity Exercises

使用机器学习在网络安全实践练习中为学生提供快速反馈

基本信息

  • 批准号:
    2216485
  • 负责人:
  • 金额:
    $ 13.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This project aims to serve the national interest by using machine learning to provide students with timely feedback while completing hands-on cybersecurity exercises. A cyber informed citizenry is a vital part of our national defense strategy. Cybercrime is becoming increasingly sophisticated, and the systems and devices that need security are becoming ever more complex and interconnected. These issues highlight the need to develop programs that enable students to quickly obtain the fundamental skills and knowledge considered essential by cybersecurity experts. Hands-on cybersecurity exercises are known to provide students with basic cybersecurity knowledge, skills, and abilities. To be effective these exercises need to provide students with rapid feedback to prevent them from getting stuck and frustrated. The goal of this project is to use machine learning to monitor students as they work through hands-on cybersecurity exercises and automatically identify when they are getting stuck and frustrated. The students will then be given suggestions to help them to successfully complete the exercise. This project plans to use reinforcement learning to create, test, and deploy a semi-automated rapid hint system. The project intends to develop tools to collect hints directly from student-teacher interactions, which will then be used to teach the system which hints to apply and when. The system will interact with both the teacher and the student by suggesting hints as the system becomes more proficient. The hint system will be integrated into the EDURange platform but will be compatible with other cyberrange platforms such as DeterLab and KYPO. The PI team intends to offer workshops for faculty on how to use EDURange and the hint system. The hint system will collect data that will be analyzed to determine the efficacy of the tool, and to develop new hints and strategies for helping students. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过使用机器学习为学生提供及时的反馈,同时完成动手的网络安全练习,为国家利益服务。网络信息公民是我们国防战略的重要组成部分。网络犯罪变得越来越复杂,需要安全的系统和设备变得越来越复杂和相互关联。这些问题突出表明,有必要制定计划,使学生能够快速获得网络安全专家认为必不可少的基本技能和知识。众所周知,动手网络安全练习可以为学生提供基本的网络安全知识,技能和能力。为了有效,这些练习需要为学生提供快速反馈,以防止他们陷入困境和沮丧。该项目的目标是使用机器学习来监控学生,因为他们通过动手网络安全练习工作,并自动识别他们何时陷入困境和沮丧。然后,学生将得到建议,以帮助他们成功地完成练习。该项目计划使用强化学习来创建,测试和部署半自动化快速提示系统。该项目旨在开发工具,直接从学生和教师的互动中收集提示,然后将用于教授系统何时应用提示。随着系统变得更加熟练,系统将通过建议提示与教师和学生进行交互。提示系统将被集成到EDURange平台中,但将与其他cyberrange平台兼容,如DeterLab和KYPO。 PI团队打算为教师提供如何使用EDURange和提示系统的研讨会。提示系统将收集数据,并对这些数据进行分析,以确定该工具的有效性,并开发新的提示和策略来帮助学生。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hands-On SQL Injection in the Classroom: Lessons Learned
课堂上的 SQL 注入实践:经验教训
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jens Mache其他文献

An assessment of Gigabit Ethernet as cluster interconnect
千兆位以太网作为集群互连的评估
Pear deck: an interactive classroom response system to encourage student engagement
Pear Deck:鼓励学生参与的交互式课堂反应系统
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jens Mache;N. Tan;George Shoemaker;Richard S. Weiss
  • 通讯作者:
    Richard S. Weiss
Look-Ahead Routing Reduces Wrong Turns in Freenet-Style Peer-to-Peer Systems
前瞻路由减少了自由网式点对点系统中的错误转向
A Jupyter Notebook Based Tool for Building Skills in Computational Statistical Mechanics
基于 Jupyter Notebook 的工具,用于培养计算统计力学技能
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Smith;Ben Glick;Jens Mache
  • 通讯作者:
    Jens Mache
Finding the Balance Between Guidance and Independence in Cybersecurity Exercises
在网络安全演习中寻找指导与独立性之间的平衡
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard S. Weiss;F. Turbak;Jens Mache;Erik Lloyd Nilsen;M. Locasto
  • 通讯作者:
    M. Locasto

Jens Mache的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jens Mache', 18)}}的其他基金

Collaborative Research: Modeling Student Activity and Learning on Cybersecurity Testbeds
协作研究:在网络安全测试平台上对学生活动和学习进行建模
  • 批准号:
    1723714
  • 财政年份:
    2017
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Standard Grant
EDURange: Supporting cyber security education with hands-on exercises, a student-staffed help-desk, and webinars
EDURange:通过实践练习、学生服务台和网络研讨会支持网络安全教育
  • 批准号:
    1516100
  • 财政年份:
    2015
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Standard Grant
Collaborative Research: TUES: Type 1: EDURange: A Cybersecurity Competition Platform to Enhance Undergraduate Security Analysis Skills
合作研究:TUES:类型 1:EDURange:提高本科生安全分析技能的网络安全竞赛平台
  • 批准号:
    1141314
  • 财政年份:
    2012
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Responding to Manycore: Teaching parallel computing with higher-level languages and activity-based laboratories
协作研究:响应众核:使用高级语言和基于活动的实验室教授并行计算
  • 批准号:
    1044932
  • 财政年份:
    2011
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Standard Grant
Collaborative Project: CSR-CSI Making Sensor Networks Accessible to Undergraduates Through Activity-Based Laboratory Materials
合作项目:CSR-CSI 通过基于活动的实验室材料让本科生可以使用传感器网络
  • 批准号:
    0720914
  • 财政年份:
    2007
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Standard Grant
Collaborative Project: Adaptation of Globus Toolkit 3 Tutorials for Undergraduate Computer Science Students
合作项目:为计算机科学本科生改编 Globus Toolkit 3 教程
  • 批准号:
    0411237
  • 财政年份:
    2004
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
  • 批准号:
    2307504
  • 财政年份:
    2024
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Standard Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
  • 批准号:
    10100493
  • 财政年份:
    2024
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Collaborative R&D
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
  • 批准号:
    LP230100351
  • 财政年份:
    2024
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Linkage Projects
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Fellowship
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
  • 批准号:
    2910604
  • 财政年份:
    2024
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Studentship
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
  • 批准号:
    24K17615
  • 财政年份:
    2024
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
  • 批准号:
    10979324
  • 财政年份:
    2024
  • 资助金额:
    $ 13.82万
  • 项目类别:
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
  • 批准号:
    EP/X027732/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
  • 批准号:
    2401047
  • 财政年份:
    2024
  • 资助金额:
    $ 13.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了