Institute for Data, Econometrics, Algorithms and Learning (IDEAL)

数据、计量经济学、算法和学习研究所 (IDEAL)

基本信息

  • 批准号:
    2217023
  • 负责人:
  • 金额:
    $ 318万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

The Institute for Data, Econometrics, Algorithms, and Learning (IDEAL) will consolidate and amplify research devoted to the foundations of data science across all the major research-focused educational institutions in the greater Chicago area: the University of Illinois at Chicago, Northwestern University, the Toyota Technological Institute at Chicago, the University of Chicago, and the Illinois Institute of Technology. This transdisciplinary institute involves over 50 researchers working on key aspects of the foundations of data science across computer science, electrical engineering, mathematics, statistics, and several related fields like economics, operations research, and law, and they are complemented by members of Google’s learning theory team. Its research goals range from the core foundations of data science to its interfaces with other disciplines: 1) tackling important challenges related to foundations of machine learning and optimization, 2) addressing statistical, algorithmic and mathematical challenges in dealing with high-dimensional data, and 3) exploring the foundations of aspects of data science that interact with society. The institute will foster strong connections with the community and local high schools, broaden participation in data science locally and nationally, and build lasting research and educational infrastructure through its activities. Institute activities will include workshops for undergraduate students, high school teacher workshops, public lectures, and museum exhibit designs. These will build new pathways for undergraduate students, high school students, and the broader public from diverse and underrepresented backgrounds, to increase participation and engagement with scientific fields related to data science.The research thrusts of the institute will center around the foundations of machine learning, high-dimensional data analysis and inference, and data science and society. Specific topics include foundations of deep learning, reinforcement learning, machine learning and logic, network inference, high-dimensional data analysis, trustworthiness & reliability, fairness, and data science with strategic agents. The research activities are designed to facilitate collaboration between the different disciplines and across the five Chicago-area institutions, and they build on the extensive experience from previous efforts of the participating universities. The activities include topical special programs, postdoctoral fellows, co-mentored PhD students, workshops, coordinated graduate courses, visiting fellows, research meetings, and brainstorming sessions. The proposed research will lead to new theoretical frameworks, models, mathematical tools and algorithms for analyzing high-dimensional data, inference and learning. Successful outcomes will also lead to a better understanding of the foundations of data science and machine learning in both strategic and non-strategic environments – including emerging concerns like reliability, fairness, privacy and interpretability as data science interacts with society in various ways. The institute will also have broader impacts of strengthening research and educational infrastructure, developing human resources, broadening participation from underrepresented groups, and by connecting theory to science and industry. The institute will organize activities to engage the community and a diverse group of students at all levels, including introductory workshops for undergraduate research participants, high school student and teacher outreach (through a partnership with the Math Circles of Chicago), and public lectures as part of both our research program and a partnership with the Museum of Science and Industry. The Chicago public institutions that we engage serve a very diverse population, so the outreach, recruitment, and training activities will broaden participation from underrepresented groups. Finally, the institute will have direct engagement with applications and industry through its activities involving Google, other industry partners in the broader Chicago area, and applied data science institutes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据、计量经济学、算法和学习研究所(IDEAL)将在大芝加哥地区所有主要的专注于研究的教育机构--芝加哥伊利诺伊大学、西北大学、芝加哥丰田理工学院、芝加哥大学和伊利诺伊理工学院--巩固和扩大致力于数据科学基础的研究。这个跨学科研究所有50多名研究人员,他们从事数据科学基础的关键方面的工作,涉及计算机科学、电气工程、数学、统计学以及几个相关领域,如经济学、运筹学和法学,他们还得到了谷歌学习理论团队成员的补充。它的研究目标从数据科学的核心基础到它与其他学科的接口:1)解决与机器学习和优化基础相关的重要挑战,2)解决处理高维数据的统计、算法和数学挑战,3)探索数据科学与社会互动的各个方面的基础。该研究所将与社区和当地高中建立牢固的联系,扩大地方和国家对数据科学的参与,并通过其活动建立持久的研究和教育基础设施。学院的活动将包括本科生工作坊、高中教师工作坊、公开讲座和博物馆展品设计。这些将为本科生、高中生和来自不同背景和代表性不足的更广泛的公众建立新的途径,以增加与数据科学相关的科学领域的参与和接触。该研究所的研究重点将围绕机器学习、高维数据分析和推理以及数据科学和社会的基础。具体主题包括深度学习的基础、强化学习、机器学习和逻辑、网络推理、高维数据分析、可信性和可靠性、公平性,以及具有战略代理的数据科学。研究活动旨在促进不同学科之间和芝加哥地区五所机构之间的合作,并建立在参与大学以前努力的广泛经验基础上。这些活动包括专题特别计划、博士后研究员、共同指导的博士生、研讨会、协调研究生课程、访问研究员、研究会议和集思广益会议。拟议的研究将导致新的理论框架、模型、数学工具和算法,用于分析高维数据、推理和学习。成功的结果还将使人们更好地理解数据科学和机器学习在战略和非战略环境中的基础--包括随着数据科学以各种方式与社会互动而出现的可靠性、公平性、隐私和可解释性等新问题。该研究所还将在加强研究和教育基础设施、开发人力资源、扩大代表不足群体的参与以及将理论与科学和工业联系起来方面产生更广泛的影响。该研究所将组织各种活动,以吸引社区和各级不同的学生群体,包括为本科生研究参与者举办的入门研讨会,高中学生和教师的推广(通过与芝加哥数学界的合作),以及作为我们研究计划和与科学与工业博物馆合作的公共讲座的一部分。我们雇用的芝加哥公共机构服务于非常多样化的人群,因此外展、招聘和培训活动将扩大代表不足群体的参与。最后,该研究所将通过其涉及谷歌、更广泛的芝加哥地区的其他行业合作伙伴和应用数据科学研究所的活动,直接与应用程序和行业接触。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpreting Training Aspects of Deep-Learned Error-Correcting Codes
解释深度学习纠错码的训练方面
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lev Reyzin其他文献

Lev Reyzin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lev Reyzin', 18)}}的其他基金

HDR TRIPODS: UIC Foundations of Data Science Institute
HDR TRIPODS:UIC 数据科学研究所基础
  • 批准号:
    1934915
  • 财政年份:
    2019
  • 资助金额:
    $ 318万
  • 项目类别:
    Continuing Grant
EAGER: New Algorithms for Feature-Efficient Learning
EAGER:特征高效学习的新算法
  • 批准号:
    1848966
  • 财政年份:
    2018
  • 资助金额:
    $ 318万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
  • 批准号:
    EP/Z000335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 318万
  • 项目类别:
    Research Grant
Measuring and Modeling Local Economic Development using New Satellite Data and Spatial Econometrics
使用新卫星数据和空间计量经济学测量和建模地方经济发展
  • 批准号:
    24K04884
  • 财政年份:
    2024
  • 资助金额:
    $ 318万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Institute for Data, Econometrics, Algorithms and Learning (IDEAL)
数据、计量经济学、算法和学习研究所 (IDEAL)
  • 批准号:
    2216970
  • 财政年份:
    2022
  • 资助金额:
    $ 318万
  • 项目类别:
    Continuing Grant
Institute for Data, Econometrics, Algorithms and Learning (IDEAL)
数据、计量经济学、算法和学习研究所 (IDEAL)
  • 批准号:
    2216912
  • 财政年份:
    2022
  • 资助金额:
    $ 318万
  • 项目类别:
    Continuing Grant
Institute for Data, Econometrics, Algorithms and Learning (IDEAL)
数据、计量经济学、算法和学习研究所 (IDEAL)
  • 批准号:
    2216899
  • 财政年份:
    2022
  • 资助金额:
    $ 318万
  • 项目类别:
    Continuing Grant
Institute for Data, Econometrics, Algorithms and Learning (IDEAL)
数据、计量经济学、算法和学习研究所 (IDEAL)
  • 批准号:
    2216926
  • 财政年份:
    2022
  • 资助金额:
    $ 318万
  • 项目类别:
    Continuing Grant
Bayesian Empirical Likelihood: Data Analysis Tools with Applications in Econometrics
贝叶斯经验似然:数据分析工具在计量经济学中的应用
  • 批准号:
    1921523
  • 财政年份:
    2019
  • 资助金额:
    $ 318万
  • 项目类别:
    Standard Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934813
  • 财政年份:
    2019
  • 资助金额:
    $ 318万
  • 项目类别:
    Standard Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934931
  • 财政年份:
    2019
  • 资助金额:
    $ 318万
  • 项目类别:
    Standard Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934843
  • 财政年份:
    2019
  • 资助金额:
    $ 318万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了