Collaborative Research: PPoSS: Planning: Efficient and Scalable Learning and Management of Distributed Probabilistic Graphs

协作研究:PPoSS:规划:分布式概率图的高效且可扩展的学习和管理

基本信息

  • 批准号:
    2217104
  • 负责人:
  • 金额:
    $ 10.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The advancement of cloud-computing infrastructure and machine-learning algorithms have enabled transformative techniques that push the boundaries of various domains, ranging from automated drug design to natural-language understanding. However, understanding the full software/hardware stack remains a grand challenge for domain experts in developing scalable domain-specific machine-learning models, especially when the application data is of inherently non-relational representations. The project’s novelties are to explore, design, and implement an end-to-end system that delivers efficient and effective management of probabilistic graphs, which can serve as a general data abstraction in a variety of domains (e.g., social network, bioinformatics, sensing and communication, to name a few). The probabilistic graph model not only captures complicated correlations among real-world entities but also quantifies the intensities of correlations or influences among them. The project’s impacts are that it addresses important missing pieces from both theory and system practices to support probabilistic graph management in a systematic, inductive, and verifiable way. This planning-grant project investigates an end-to-end probabilistic graph management system that promises efficient probabilistic graph learning, representation, aggregation, and analysis with quality guarantees in a scalable distributed setting. The exploration focuses on the full software/hardware stack of probabilistic-graph management, including designing formal probabilistic-graph definition/manipulation abstractions, and the provable compiling process of inductive constraints with guaranteed correctness and efficiency of pipelining execution in a distributed setting. This computing framework can serve as a general-purpose probabilistic-graph analysis tool that benefits different research domains by discovering and understanding the complex correlations among real-world entities in a more comprehensive and transformative way. Besides this advantage, the outcomes of this project, such as open-source software, publications, and workshop tutorials, could benefit data-management research, decision-making processing in general for the industry (sensing-based automatic operations, e.g., auto-piloting, self-driving), and the government (data-driven policymaking, e.g., public health/global trading monitoring). Furthermore, products from this project can be integrated to enrich the curriculum development of undergraduate/graduate-level courses (with course projects related to cloud computing, data management, and machine learning) and therefore train/benefit a rich body of underrepresented students (including minority/female students) at the investigators' institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
云计算基础设施和机器学习算法的进步,推动了从自动化药物设计到自然语言理解等各个领域的变革技术。然而,理解完整的软件/硬件堆栈对于开发可扩展的特定领域机器学习模型的领域专家来说仍然是一个巨大的挑战,特别是当应用程序数据具有固有的非关系表示时。该项目的新颖之处在于探索、设计和实现一个端到端系统,该系统提供了高效和有效的概率图管理,可以作为各种领域(例如,社交网络、生物信息学、传感和通信)的一般数据抽象。概率图模型不仅捕获了现实世界实体之间复杂的相关性,而且还量化了它们之间的相关性或影响的强度。该项目的影响在于,它解决了理论和系统实践中重要的缺失部分,以系统的、归纳的和可验证的方式支持概率图管理。这个计划授权项目研究了一个端到端的概率图管理系统,该系统承诺在可扩展的分布式设置中高效的概率图学习、表示、聚合和分析,并提供质量保证。重点探讨了概率图管理的完整软件/硬件堆栈,包括设计形式化的概率图定义/操作抽象,以及可证明的归纳约束编译过程,保证分布式环境下流水线执行的正确性和效率。这个计算框架可以作为一个通用的概率图分析工具,通过以更全面和变革的方式发现和理解现实世界实体之间的复杂相关性,使不同的研究领域受益。除了这一优势之外,该项目的成果,如开源软件、出版物和讲习班教程,可以有利于数据管理研究、行业总体决策处理(基于传感的自动操作,例如自动驾驶、自动驾驶)和政府(数据驱动的政策制定,例如公共卫生/全球贸易监测)。此外,该项目的产品可以整合到丰富本科/研究生水平课程的课程开发中(包括与云计算、数据管理和机器学习相关的课程项目),从而在研究机构中培训/受益于大量代表性不足的学生(包括少数民族/女学生)。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
InitLight: Initial Model Generation for Traffic Signal Control Using Adversarial Inverse Reinforcement Learning
  • DOI:
    10.24963/ijcai.2023/550
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yutong Ye;Yingbo Zhou;Jiepin Ding;Ting Wang;Mingsong Chen;Xiang Lian
  • 通讯作者:
    Yutong Ye;Yingbo Zhou;Jiepin Ding;Ting Wang;Mingsong Chen;Xiang Lian
Triangular Stability Maximization by Influence Spread over Social Networks
  • DOI:
    10.14778/3611479.3611490
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheng Hu;Weiguo Zheng;Xiang Lian
  • 通讯作者:
    Zheng Hu;Weiguo Zheng;Xiang Lian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang Lian其他文献

RSkNN: kNN Search on Road Networks by Incorporating Social Influence
RSkNN:结合社会影响力的道路网络 kNN 搜索
Shooting top-k stars in uncertain databases
在不确定的数据库中拍摄前 k 颗星
  • DOI:
    10.1007/s00778-011-0225-y
  • 发表时间:
    2011-12
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Lei Chen;Xiang Lian
  • 通讯作者:
    Xiang Lian
Energy-efficient all optical wavelength converter for optical phase conjugation
用于光相位共轭的节能全光波长转换器
  • DOI:
    10.1016/j.yofte.2020.102278
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Wang Lei;Gao Mingyi;Liu Mengli;Zhu Huaqing;Chen Bowen;Xiang Lian
  • 通讯作者:
    Xiang Lian
Probabilistic Time-Constrained Paths Search over Uncertain Road Networks
不确定道路网络上的概率时间约束路径搜索
  • DOI:
    10.1109/tsc.2016.2582692
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wengen Li;Jihong Guan;Xiang Lian;Shuigeng Zhou;Jiannong Cao
  • 通讯作者:
    Jiannong Cao
Cost-efficient repair in inconsistent probabilistic databases
在不一致的概率数据库中进行经济有效的修复

Xiang Lian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 10.1万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了