Interaction of electromagnetic pulses and nanostructures
电磁脉冲与纳米结构的相互作用
基本信息
- 批准号:2217759
- 负责人:
- 金额:$ 35.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports computational research aimed at developing and applying new methods to model the interaction of electromagnetic waves and matter. Almost everything in everyday life around us, from photosynthesis to television screens and mobile phones, is a result of some form of interaction of electromagnetic fields (light) and matter. Atoms and molecules in matter can absorb and emit light and can interact with each other coupled to electromagnetic fields. When electromagnetic fields are weak, their interaction changes the dynamics of electrons and nuclei, but the electromagnetic fields themselves remain unperturbed. When strong electromagnetic fields interact with matter, however, the motion of the electrons and the nuclei induce electromagnetic fields in addition to the incident fields. The induced fields can be substantially larger than the incident field and this can significantly change the material properties. The goal of this project is to simulate the interaction of coupled light-matter systems by using a quantum description of the matter and classical field approach to the electromagnetic fields in a self-consistent, coupled formalism. The developed methods will be applied to a wide range of nanomaterials that are of fundamental and technological importance. This award will also provide broad research training opportunities for graduate, undergraduate, and high school students in an interdisciplinary environment overarching physics, electrical engineering, materials science, quantum mechanical simulations, high-performance computing, and novel computational algorithms. In addition, the PI will host high-school teachers through the Vanderbilt Research Experiences for Teachers program, and develop classroom modules with them on emerging scientific and technological frontiers in nanoscience and computational modeling.TECHNICAL SUMMARYThis award supports computational research aimed at developing and applying a time-dependent orbital-free (TD-OF) approach coupled with Maxwell equations to describe the interaction of electromagnetic waves and matter. The coupled Maxwell TD-OF equations treat the electron and photon dynamics in a microscopic framework on equal footing. In the coupled frame, the densities and currents are calculated using a quantum mechanical approach in the presence of a time-dependent vector potential, and then Maxwell equations are solved using the quantum mechanically calculated time-dependent microscopic currents and densities. A new approach, the Riemann-Silberstein formalism, will be used to solve Maxwell equations by the propagation of "the wave function of the photon". The OF approach will allow for electrodynamic simulations to be performed for systems of experimentally relevant sizes with a quantum description of the electrons. The results of the simulations will be tested against recent experimental results. Computational challenges of gap plasmonics (charge transfer plasmons, plasmonic tunnel junctions, high harmonic generation) and 2D plasmonics (real space mapping, edge plasmons, terahertz plasmonics) will be pursued. This award will also provide broad research training opportunities for graduate, undergraduate, and high school students in an interdisciplinary environment overarching physics, electrical engineering, materials science, quantum mechanical simulations, high-performance computing, and novel computational algorithms. In addition, the PI will host high-school teachers through the Vanderbilt Research Experiences for Teachers program, and develop classroom modules with them on emerging scientific and technological frontiers in nanoscience and computational modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持旨在开发和应用新方法来模拟电磁波和物质相互作用的计算研究。我们周围日常生活中的几乎所有东西,从光合作用到电视屏幕和手机,都是电磁场(光)和物质某种形式相互作用的结果。物质中的原子和分子可以吸收和发射光,并可以在电磁场的作用下相互作用。当电磁场很弱时,它们的相互作用会改变电子和原子核的动力学,但电磁场本身保持不受干扰。然而,当强电磁场与物质相互作用时,除了入射场外,电子和原子核的运动还会产生电磁场。感应场可以比入射场大得多,这可以显著改变材料的性质。这个项目的目标是通过使用物质的量子描述和电磁场的经典场方法来模拟耦合光-物质系统的相互作用,这是一种自洽的耦合形式。开发的方法将广泛应用于具有基础和技术重要性的纳米材料。该奖项还将为研究生、本科生和高中生提供广泛的研究培训机会,在一个涵盖物理、电气工程、材料科学、量子力学模拟、高性能计算和新计算算法的跨学科环境中。此外,PI将通过Vanderbilt教师研究体验计划接待高中教师,并与他们一起开发纳米科学和计算建模方面的新兴科学和技术前沿的课堂模块。技术总结该奖项支持旨在开发和应用依赖时间的无轨道(TD-OF)方法和麦克斯韦方程来描述电磁波与物质相互作用的计算研究。耦合的麦克斯韦TD-OF方程在微观框架下平等地处理电子和光子动力学。在耦合标架中,在含时矢势存在的情况下,用量子力学方法计算密度和电流,然后用量子力学计算的含时微观电流和密度求解麦克斯韦方程。一种新的方法,Riemann-Silberstein形式,将被用来通过“光子波函数”的传播来求解麦克斯韦方程。OF方法将允许对具有电子的量子描述的实验相关大小的系统进行电动力学模拟。模拟的结果将与最近的实验结果进行比较。GAP等离子体(电荷转移等离子体、等离子体隧道结、高次谐波产生)和2D等离子体(实空间映射、边缘等离子体、太赫兹等离子体)的计算挑战将继续存在。该奖项还将为研究生、本科生和高中生提供广泛的研究培训机会,在一个涵盖物理、电气工程、材料科学、量子力学模拟、高性能计算和新计算算法的跨学科环境中。此外,PI将通过Vanderbilt教师研究体验计划接待高中教师,并与他们一起开发纳米科学和计算模型方面的新兴科学和技术前沿的课堂模块。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Harmonically confined n -electron systems coupled to light in a cavity: Time-dependent case
与腔内光耦合的谐波约束 n 电子系统:时间相关情况
- DOI:10.1103/physrevb.107.235130
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Huang, Chenhang;Covington, Cody;Varga, Kálmán
- 通讯作者:Varga, Kálmán
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kalman Varga其他文献
Theory of magnetotrion-polaritons in transition metal dichalcogenide monolayers
过渡金属二硫属化物单层中的磁振子-极化激元理论
- DOI:
10.1038/s41699-024-00517-1 - 发表时间:
2024-11-27 - 期刊:
- 影响因子:8.800
- 作者:
Andrejs Kudlis;Ivan Aleksandrov;Zaur Alisultanov;Kalman Varga;Ivan Shelykh;Vanik Shahnazaryan - 通讯作者:
Vanik Shahnazaryan
Doubly excited states of the positronium molecule
正电子素分子的双激发态
- DOI:
10.1103/physreva.102.012825 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yi Zhang;Meng-Shan Wu;Ying Qian;Kalman Varga;Huili Han;Jun-Yi Zhang - 通讯作者:
Jun-Yi Zhang
Confined variational calculation of positronium-hydrogen scattering below the positronium excitation threshold
正电子素激发阈值以下正电子素氢散射的受限变分计算
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.9
- 作者:
Meng;Jun;Y. Qian;Kalman Varga;U. Schwingenschlögl;Zhiyuan Yan - 通讯作者:
Zhiyuan Yan
Stability of few-charge systems in quantum mechanics
量子力学中少电荷系统的稳定性
- DOI:
10.1016/j.physrep.2005.02.003 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
E. Armour;Jean;Kalman Varga - 通讯作者:
Kalman Varga
Positron scattering and annihilation from helium at low energies
低能量氦的正电子散射和湮灭
- DOI:
10.1103/physreva.108.062816 - 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
Xian;Meng;Jun Jiang;Chen;Jun;Zong;Kalman Varga - 通讯作者:
Kalman Varga
Kalman Varga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kalman Varga', 18)}}的其他基金
IRES Track I: International Research Experience for Students in Computational Nanoscience
IRES Track I:计算纳米科学学生的国际研究经验
- 批准号:
2245029 - 财政年份:2023
- 资助金额:
$ 35.35万 - 项目类别:
Standard Grant
IRES Track I: International Research Experience for Students in Computational Nanoscience
IRES Track I:计算纳米科学学生的国际研究经验
- 批准号:
1826917 - 财政年份:2018
- 资助金额:
$ 35.35万 - 项目类别:
Standard Grant
Theoretical modeling of quantum interference nanodevices
量子干涉纳米器件的理论建模
- 批准号:
1307368 - 财政年份:2013
- 资助金额:
$ 35.35万 - 项目类别:
Standard Grant
Multidomain Multiscale Simulation of the Coupled Maxwell-Schroedinger Equations
耦合麦克斯韦-薛定谔方程的多域多尺度仿真
- 批准号:
1314463 - 财政年份:2013
- 资助金额:
$ 35.35万 - 项目类别:
Standard Grant
IRES: International Research Experience for Students in Computational Nanoscience
IRES:计算纳米科学学生的国际研究经验
- 批准号:
1261117 - 财政年份:2013
- 资助金额:
$ 35.35万 - 项目类别:
Standard Grant
Time-dependent quantum simulation of nanodevices
纳米器件的时间相关量子模拟
- 批准号:
0925422 - 财政年份:2009
- 资助金额:
$ 35.35万 - 项目类别:
Continuing Grant
Hierarchical simulation of quantum devices and circuits
量子器件和电路的分层模拟
- 批准号:
0622146 - 财政年份:2006
- 资助金额:
$ 35.35万 - 项目类别:
Continuing Grant
相似国自然基金
电磁作用下蛋白质分离行为的研究
- 批准号:20976119
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
基于电阻层析成象和电磁流量计融合的两相流检测研究
- 批准号:60772044
- 批准年份:2007
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Antiviral Electromagnetic Pulses (COVID-19)
SBIR 第一阶段:抗病毒电磁脉冲 (COVID-19)
- 批准号:
2035140 - 财政年份:2021
- 资助金额:
$ 35.35万 - 项目类别:
Standard Grant
Research on Highly Accurate Position Estimation System of In-Body Small Medical Devices Using Electromagnetic Pulses
利用电磁脉冲的体内小型医疗器械高精度位置估计系统的研究
- 批准号:
18K18376 - 财政年份:2018
- 资助金额:
$ 35.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
8833279 - 财政年份:2014
- 资助金额:
$ 35.35万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
9040161 - 财政年份:2014
- 资助金额:
$ 35.35万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
8697577 - 财政年份:2014
- 资助金额:
$ 35.35万 - 项目类别:
Three-Dimensional Patient-Tailored RF Pulses for Spin Echo Neuroimaging at 7 T
用于 7 T 自旋回波神经成像的三维患者定制射频脉冲
- 批准号:
9245685 - 财政年份:2014
- 资助金额:
$ 35.35万 - 项目类别:
ULTRA-HIGH SPEED SWITCHES FOR GENERATION OF NANOSECOND MICROWAVE PULSES
用于产生纳秒微波脉冲的超高速开关
- 批准号:
8363953 - 财政年份:2011
- 资助金额:
$ 35.35万 - 项目类别:
ULTRA-HIGH SPEED SWITCHES FOR GENERATION OF NANOSECOND MICROWAVE PULSES
用于产生纳秒微波脉冲的超高速开关
- 批准号:
8172082 - 财政年份:2010
- 资助金额:
$ 35.35万 - 项目类别:
ULTRA-HIGH SPEED SWITCHES FOR GENERATION OF NANOSECOND MICROWAVE PULSES
用于产生纳秒微波脉冲的超高速开关
- 批准号:
7956599 - 财政年份:2009
- 资助金额:
$ 35.35万 - 项目类别:
ULTRA-HIGH SPEED SWITCHES FOR GENERATION OF NANOSECOND MICROWAVE PULSES
用于产生纳秒微波脉冲的超高速开关
- 批准号:
7723904 - 财政年份:2008
- 资助金额:
$ 35.35万 - 项目类别: