Collaborative Research: EAGER/Tools4Cells: Translating single cell data into an ultra-high resolution spatial map using fluorescent marker genes
合作研究:EAGER/Tools4Cells:使用荧光标记基因将单细胞数据转化为超高分辨率空间图
基本信息
- 批准号:2218236
- 负责人:
- 金额:$ 8.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent technical advances in molecular biology now make it possible to determine the entire population of messenger RNA transcripts within each individual cell of a multicellular organism. This technology, known as single-cell RNA sequencing (scRNA-seq), has the potential to be broadly applied in plants to better understand their development, evolution, and stress responses. In this project, the plant root will be used as a model organ to construct an ultra-high-resolution 3D-model displaying gene expression data from individual cells embedded in this model. Using this method, a user can locate cells labeled by a fluorescent marker in a plant organ and determine the expression levels of thousands of genes in both labeled and unlabeled cells. This tool can also be used to combine fluorescent images from different reporter genes to understand the similarity and differences of gene expression for both the marker gene and other genes expressed in the same sample. The Broader Impacts of the work include the intrinsic merit of the research results, which will be disseminated to the broad research community via the Plant Cell Atlas (PCA). These results will include protocols for collecting image data, a computational pipeline for constructing 3D images, and a method to annotate and assign cell types in a conceptual model of plant roots. The computational pipeline for image analysis and machine learning will be deposited to public repository with detailed documentation and user manuals and peer-reviewed publications. Research training will be provided to graduate students and a post-doc and, through a collaboration with Virginia State University, training workshops will be developed for advanced genomic data analysis for VSU students.Connecting spatial location of individual cells and gene expression patterns within each cell is the frontier of plant cell biology research. Currently available scRNA-seq protocols do not preserve spatial locations of each cell, whereas spatial transcriptome approaches using physical slices of embedded tissues have limited resolution. The goal of this EAGER project is to establish a new approach for spatial transcriptome analysis in plants. One major resource from the plant research community is a large number of transgenic reporter gene lines (e.g. promoter-GFP lines) that have been accumulated for the past several decades. This project will leverage this large reporter gene resource to perform a proof of principle study using the same GFP marker lines for both imaging and scRNA-seq experiments. Using the meristematic region of plant roots as our model system, scRNA-seq data for selected promoter-GFP marker lines will be generated and machine learning models will be applied to accurately predict GFP+ and GFP- cells. Fluorescent imaging and sematic labeling will be used to merge and model 3D root images and GFP expression. Finally, a machine learning method will be developed to map the scRNA-seq data to the 3D root model. Results from this new approach will be compared with existing data and will be validated in planta. Together, this work will provide a powerful new approach to develop 3D expression models for any plant species. Results from this method can be used to address questions related to asymmetrical gene expression in development and stress responses in roots, as well as in other tissues or organs in plants. This project is jointly funded by the Divisions of Molecular and Cellular Sciences (Cellular Dynamics and Function program) together with Integrative Organismal Systems (Physiological Mechanisms and Biomechanics program) , both in the Biological Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分子生物学的最新技术进步使确定多细胞生物体中每个细胞内信使RNA转录本的整个群体成为可能。 这项技术被称为单细胞RNA测序(scRNA-seq),有可能广泛应用于植物,以更好地了解它们的发育,进化和胁迫反应。 在该项目中,植物根将被用作模型器官,以构建一个超高分辨率的3D模型,显示嵌入该模型中的单个细胞的基因表达数据。使用这种方法,用户可以在植物器官中定位由荧光标记物标记的细胞,并确定标记和未标记细胞中数千个基因的表达水平。该工具还可用于组合来自不同报告基因的联合收割机荧光图像,以了解标记基因和在同一样品中表达的其它基因两者的基因表达的相似性和差异。 这项工作的更广泛影响包括研究成果的内在价值,这些成果将通过植物细胞图谱(PCA)传播给广大的研究界。这些结果将包括用于收集图像数据的协议,用于构建3D图像的计算管道,以及在植物根的概念模型中注释和分配细胞类型的方法。用于图像分析和机器学习的计算管道将存放在公共存储库中,并附有详细的文档、用户手册和同行评审的出版物。 将为研究生和博士后提供研究培训,并通过与弗吉尼亚州立大学合作,为VSU学生开发高级基因组数据分析培训讲习班。将单个细胞的空间位置与每个细胞内的基因表达模式联系起来是植物细胞生物学研究的前沿。目前可用的scRNA-seq方案不保留每个细胞的空间位置,而使用包埋组织的物理切片的空间转录组方法具有有限的分辨率。EAGER项目的目标是建立一种新的植物空间转录组分析方法。植物研究界的一个主要资源是过去几十年来积累的大量转基因报告基因系(例如启动子-GFP系)。该项目将利用这一大型报告基因资源,使用相同的GFP标记系进行成像和scRNA-seq实验的原理证明研究。使用植物根的分生组织区域作为我们的模型系统,将生成所选启动子-GFP标记系的scRNA-seq数据,并将应用机器学习模型来准确预测GFP+和GFP-细胞。荧光成像和语义标记将用于合并和建模3D根部图像和GFP表达。最后,将开发一种机器学习方法来将scRNA-seq数据映射到3D根模型。这种新方法的结果将与现有数据进行比较,并将在植物中进行验证。总之,这项工作将为开发任何植物物种的3D表达模型提供一种强大的新方法。该方法的结果可用于解决与根以及植物其他组织或器官中发育和胁迫反应中的不对称基因表达相关的问题。 该项目由生物科学理事会的分子和细胞科学部门(细胞动力学和功能计划)以及综合有机体系统(生理机制和生物力学计划)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mao Li其他文献
Mechanism of unprecedented hydroxyl radical production and site-specific oxidative DNA damage by photoactivation of the classic arylhydroxamic acid carcinogens
经典芳基异羟肟酸致癌物光活化产生前所未有的羟基自由基和位点特异性氧化 DNA 损伤的机制
- DOI:
10.1093/carcin/bgz021 - 发表时间:
2019 - 期刊:
- 影响因子:4.7
- 作者:
Xu Dan;Huang Chun-Hua;Xie Lin-Na;Shao Bo;Mao Li;Shao Jie;Kalyanaraman Balaraman;Zhu Ben-Zhan - 通讯作者:
Zhu Ben-Zhan
span style=font-style:normal;font-family:Arial-BoldMT;color:#000000;font-size:12pt;span style=font-style:normal;color:#000000;font-size:12pt;span style=font-style:normal;color:#000000;font-size:12pt;
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.3
- 作者:
Bo Rao;Zhipeng Chen;Li Gao;Xiwei Hu;Hai Jin;Mao Li;Jianchao Li;Kexun Yu;Ge Zhuang - 通讯作者:
Ge Zhuang
Automatic detection of boundary points based on local geometrical measures
基于局部几何测量的边界点自动检测
- DOI:
10.1007/s00500-017-2817-y - 发表时间:
- 期刊:
- 影响因子:4.1
- 作者:
Xiaojie Li;Xi Wu;Jiancheng Lv;Jia He;Jianping Gou;Mao Li - 通讯作者:
Mao Li
Clinical analysis on 380 cases of forest encephalitis
森林脑炎380例临床分析
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Mao Li - 通讯作者:
Mao Li
Ni–Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil
镍钴双金属氧化镁基催化剂用于生物油中乙酸蒸汽重整制氢
- DOI:
10.1016/j.ijhydene.2014.01.025 - 发表时间:
2014-10 - 期刊:
- 影响因子:7.2
- 作者:
Ning Wang;Lu Yang;Mao Li;Lihong Huang - 通讯作者:
Lihong Huang
Mao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
复杂电子产品超精密加工及检测关键技术研究与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 8.96万 - 项目类别:
Standard Grant