RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models

RI:小:非凸低复杂度模型的不确定性量化

基本信息

  • 批准号:
    2218773
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Emerging applications in data science often involve estimating an enormous number of parameters from a highly incomplete and noisy set of measurements. In order for these applications to support modern scientific discovery and decision making, however, it is necessary to seek not merely reasonable estimations for the parameters, but perhaps more crucially, a trustworthy interpretation of the estimations and their implications. For instance, what reassurances can we offer about the quality of the estimates in hand? Can we quantify the uncertainty of our estimates due to the imperfectness of the data? Providing valid and quantitative answers to such questions is a crucial step in ensuring that: the scientific discovery and decision made based on our estimate are informative and trustworthy. Nevertheless, the existing statistical toolbox remains highly inadequate in providing measures of uncertainty for large-scale estimation methods, particularly in those scenarios where the availability of data samples is severely limited. This limits the overall value of the estimates and hampers scientific and decision-making processes. Some example application areas include: joint shape matching in computer vision and water-fat separation in medical imaging. Motivated by the above issues, the overarching goal of this project is to develop new foundational theory that integrates statistical assessment and algorithm design in an end-to-end manner, allowing for optimal inferential procedures for various nonconvex low-complexity models. Blending large-scale optimization techniques with statistical thinking, the proposed project seeks to develop a novel suite of distributional theory that enables valid uncertainty assessment for various nonconvex low-complexity models. Specifically, this project consists of the following research. First, develop a principled approach to construct optimal confidence intervals for unknown continuous parameters, on the basis of novel nonconvex estimation and de-biasing methods. Second, develop fast nonconvex algorithms and efficient uncertainty assessment procedures to reason about unknown discrete variables. Third, investigate the intimate connection between convex relaxation and nonconvex optimization, thus enabling a unified uncertainty quantification framework to accommodate both approaches. All research thrusts are motivated by, and will ultimately be tested on concrete practical applications. This project will significantly advance the fundamental techniques of uncertainty quantification in data-driven applications, and will enrich the foundations for mathematical optimization, data analytics, and statistical modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据科学中的新兴应用通常涉及从高度不完整和噪声的测量集合中估计大量参数。 然而,为了使这些应用程序支持现代科学发现和决策,不仅需要对参数进行合理的估计,而且可能更重要的是,对估计及其含义进行可信的解释。例如,我们可以对手头的估计数的质量提供什么保证?由于数据的不确定性,我们能否量化估计的不确定性? 为这些问题提供有效和定量的答案是确保以下方面的关键一步:基于我们的估计做出的科学发现和决策是信息丰富和值得信赖的。然而,现有的统计工具箱仍然非常不足以为大规模估算方法提供不确定性的衡量标准,特别是在数据样本严重有限的情况下。这限制了估计数的总体价值,妨碍了科学和决策进程。一些示例应用领域包括:计算机视觉中的关节形状匹配和医学成像中的水脂分离。受上述问题的启发,该项目的总体目标是开发新的基础理论,以端到端的方式集成统计评估和算法设计,为各种非凸低复杂度模型提供最佳推理程序。将大规模优化技术与统计思想相结合,该项目旨在开发一套新的分布理论,为各种非凸低复杂性模型提供有效的不确定性评估。具体而言,该项目包括以下研究。首先,发展一个原则性的方法来构造未知连续参数的最优置信区间,新的非凸估计和去偏方法的基础上。其次,开发快速的非凸算法和有效的不确定性评估程序,以推理未知的离散变量。第三,研究凸松弛和非凸优化之间的密切联系,从而使一个统一的不确定性量化框架,以适应这两种方法。所有的研究重点都是由具体的实际应用所激发的,并最终将在具体的实际应用中进行测试。该项目将显著推进数据驱动应用中不确定性量化的基本技术,并将丰富数学优化、数据分析和统计建模的基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Global Convergence of Natural Policy Gradient Methods with Entropy Regularization
  • DOI:
    10.1287/opre.2021.2151
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shicong Cen;Chen Cheng;Yuxin Chen;Yuting Wei;Yuejie Chi
  • 通讯作者:
    Shicong Cen;Chen Cheng;Yuxin Chen;Yuting Wei;Yuejie Chi
Uncertainty Quantification for Nonconvex Tensor Completion: Confidence Intervals, Heteroscedasticity and Optimality
  • DOI:
    10.1109/tit.2022.3205781
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Changxiao Cai;H. Poor;Yuxin Chen
  • 通讯作者:
    Changxiao Cai;H. Poor;Yuxin Chen
Breaking the sample complexity barrier to regret-optimal model-free reinforcement learning
打破样本复杂性障碍,实现后悔最优无模型强化学习
Softmax policy gradient methods can take exponential time to converge
  • DOI:
    10.1007/s10107-022-01920-6
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Gen Li;Yuting Wei;Yuejie Chi;Yuantao Gu;Yuxin Chen
  • 通讯作者:
    Gen Li;Yuting Wei;Yuejie Chi;Yuantao Gu;Yuxin Chen
Nonconvex Low-Rank Tensor Completion from Noisy Data
  • DOI:
    10.1287/opre.2021.2106
  • 发表时间:
    2021-06-03
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Cai, Changxiao;Li, Gen;Chen, Yuxin
  • 通讯作者:
    Chen, Yuxin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuxin Chen其他文献

Settling the Sample Complexity of Model-Based Offline Reinforcement Learning
解决基于模型的离线强化学习的样本复杂度
  • DOI:
    10.48550/arxiv.2204.05275
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gen Li;Laixi Shi;Yuxin Chen;Yuejie Chi;Yuting Wei
  • 通讯作者:
    Yuting Wei
Simultaneous determination of polycyclic musks in blood and urine by solid supported liquid–liquid extraction and gas chromatography–tandem mass spectrometry
固载液-液萃取气相色谱-串联质谱法同时测定血液和尿液中的多环麝香
Intelligent GP fusion from multiple sources for text classification
多源智能 GP 融合用于文本分类
UNDERSTANDING USER INTENTIONS IN VERTICAL IMAGE SEARCH
了解垂直图像搜索中的用户意图
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxin Chen
  • 通讯作者:
    Yuxin Chen
Coptis chinensis inflorescence extract protection against ultraviolet-B-induced phototoxicity, and HPLC-MS analysis of its chemical composition.
黄连花序提取物对紫外线B诱导的光毒性的保护作用及其化学成分的HPLC-MS分析。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Lingxin Zhu;Bo Huang;Xiaoquan Ban;Jingsheng He;Yuxin Chen;Li Han;Youwei Wang
  • 通讯作者:
    Youwei Wang

Yuxin Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuxin Chen', 18)}}的其他基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2221009
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    2218713
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2106739
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models
RI:小:非凸低复杂度模型的不确定性量化
  • 批准号:
    2100158
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
  • 批准号:
    2014279
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CIF: Small: Taming Nonconvexity in High-Dimensional Statistical Estimation
CIF:小:驯服高维统计估计中的非凸性
  • 批准号:
    1907661
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    1900140
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

基于鲁棒广义短路比的高比例新能源电力系统数据驱动随机小干扰稳定性分析
  • 批准号:
    52007163
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
计及通信时滞和控制器参数不确定性的大规模电力系统小干扰稳定域研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
面向不确定性多源异构数据融合分类方法的小微企业信用评级研究
  • 批准号:
    71901044
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
具有复杂不确定性的再入飞行器质心/绕质心协同控制研究
  • 批准号:
    61873029
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
山丘区小流域精细化水文建模及不确定性研究
  • 批准号:
    51709033
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
农业小流域面源氮负荷与源汇变异的定量化及其不确定性
  • 批准号:
    51779245
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
气-水-土耦合的华南红层地貌区山洪形成机理及其灾害风险定量评估
  • 批准号:
    51779279
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于小波-卡尔曼滤波的二维离散随机系统鲁棒H∞控制
  • 批准号:
    61603034
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于多源信息融合的小流域山洪灾害风险可变模糊定量评价研究
  • 批准号:
    51509007
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
可控宽压力强湍流下点火及火焰传播机理研究
  • 批准号:
    91441202
  • 批准年份:
    2014
  • 资助金额:
    300.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: CIF: Small: Sequential Decision Making Under Uncertainty With Submodular Rewards
合作研究:CIF:小:不确定性下的顺序决策与子模奖励
  • 批准号:
    2149588
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Sequential Decision Making Under Uncertainty With Submodular Rewards
合作研究:CIF:小:不确定性下的顺序决策与子模奖励
  • 批准号:
    2149617
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Uncertainty Analysis of Greenhouse Gas Quantification Methods used by Small and Medium Sized Emitters in Ontario
安大略省中小型排放者使用的温室气体量化方法的不确定性分析
  • 批准号:
    575858-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
AF: Small: Online Decision-Making under Uncertainty: Prophets and Secretaries
AF:小:不确定性下的在线决策:先知和秘书
  • 批准号:
    2114269
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models
RI:小:非凸低复杂度模型的不确定性量化
  • 批准号:
    2100158
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CIF: Small: Communication-Aware Decentralized Game-Theoretic Learning Algorithms for Networked Systems with Uncertainty
CIF:小型:用于不确定性网络系统的通信感知去中心化博弈论学习算法
  • 批准号:
    2008855
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CHS: Small: Developing a Probabilistic Grammar of Graphics for Flexible Uncertainty Visualization
CHS:小:开发图形的概率语法以实现灵活的不确定性可视化
  • 批准号:
    2126598
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CHS: Small: Developing a Probabilistic Grammar of Graphics for Flexible Uncertainty Visualization
CHS:小:开发图形的概率语法以实现灵活的不确定性可视化
  • 批准号:
    1910431
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Variable selection problem and evaluation of measuring uncertainty in small area estimation
小区域估计中的变量选择问题及测量不确定度评估
  • 批准号:
    19K13667
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CPS: Small: Uncertainty-aware Framework for Specifying, Designing and Verifying Cyber-Physical Systems
CPS:小型:用于指定、设计和验证网络物理系统的不确定性感知框架
  • 批准号:
    1932620
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了