NRI: Addressing Safe Interaction Between Autonomous and Human-Driven Vehicles

NRI:解决自动驾驶和人类驾驶车辆之间的安全交互问题

基本信息

  • 批准号:
    2219761
  • 负责人:
  • 金额:
    $ 47.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2023-10-31
  • 项目状态:
    已结题

项目摘要

Connected and automated vehicles are robotic systems which exhibit significant levels of computational capability and physical complexity. They have the capacity to make contextually decisions independently, without human intervention, while they interact in a complex environment. The data and shared information through vehicle-to-everything communication are associated with significant technical challenges and gives rise to a new level of complexity in modeling and control. It is expected that connected and automated vehicles will gradually penetrate the market, interact with human-driven vehicles, and contend with vehicle-to-everything communication limitations, e.g., bandwidth, dropouts, errors, and delays. However, different penetration rates of connected and automated vehicles can significantly alter transportation efficiency and safety. This grant will synergistically integrate human-driving behavior with control theory and learning in developing data-driven approaches that will enable a transformative new functionality of connected and automated vehicles to interact with human-driven vehicles safely and efficiently. On the education front and outreach, the research is an excellent catalyst for motivating interest in science, technology, engineering, and mathematics disciplines. The outcome of this research will deliver new methods to address a fundamental gap between optimal trajectory planning of and safe-critical control in connected and automated vehicles. The researched framework is organized at the intersection of three interdependent dimensions, namely, human-driving behavior, control theory, and learning. The human-driving dimension will enhance our understanding on how human drivers will respond to different driving scenarios. The control theory dimension will create knowledge on the appropriate prescription functions that will yield the optimal decisions and planning of connected and automated vehicles with respect to human driving behavior. The learning dimension will create knowledge of how connected and automated vehicles can learn to adapt their decisions and planning in situations where they encounter different behavior from what they already know about human driving. Thus, this dimension will not only improve the robustness of connected and automated vehicles but also their operation range with respect to any different driving behavior that they might encounter. The expected outcome of this research will aim at making connected and automated vehicles to coordinate with human-driven vehicles to improve safety and reduce pollution, energy consumption, and travel delays.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联网和自动驾驶车辆是具有高计算能力和物理复杂性的机器人系统。当它们在复杂的环境中交互时,它们有能力独立做出上下文决策,无需人工干预。通过车辆到万物通信的数据和共享信息带来了重大的技术挑战,并使建模和控制的复杂性达到了新的水平。预计联网和自动驾驶汽车将逐渐渗透市场,与人类驾驶的车辆互动,并应对车辆与万物的通信限制,例如带宽、丢包、错误和延迟。然而,联网和自动驾驶车辆的不同渗透率可能会显着改变运输效率和安全性。这笔赠款将协同地将人类驾驶行为与控制理论和学习相结合,开发数据驱动的方法,使联网和自动车辆的变革性新功能能够安全有效地与人类驾驶的车辆交互。在教育方面和推广方面,该研究是激发人们对科学、技术、工程和数学学科兴趣的极好催化剂。这项研究的成果将提供新的方法来解决联网和自动车辆的最佳轨迹规划和安全关键控制之间的根本差距。研究框架是在三个相互依赖的维度的交叉点上组织的,即人类驾驶行为、控制理论和学习。人类驾驶维度将增强我们对人类驾驶员如何应对不同驾驶场景的理解。控制理论维度将创建有关适当处方函数的知识,从而产生有关人类驾驶行为的联网和自动车辆的最佳决策和规划。学习维度将创造有关互联和自动驾驶车辆如何在遇到与人类驾驶已知行为不同的情况下学习调整其决策和规划的知识。 因此,这个维度不仅会提高联网和自动驾驶车辆的稳健性,还会提高其针对可能遇到的任何不同驾驶行为的操作范围。这项研究的预期成果将旨在使联网和自动驾驶车辆与人类驾驶车辆协调,以提高安全性并减少污染、能源消耗和出行延误。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Separation of learning and control for cyber-physical systems
  • DOI:
    10.1016/j.automatica.2023.110912
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andreas A. Malikopoulos
  • 通讯作者:
    Andreas A. Malikopoulos
Optimal Weight Adaptation for Model Predictive Control of Connected and Automated Vehicles in Mixed Traffic with Bayesian Optimization
基于贝叶斯优化的混合交通中联网自动驾驶车辆模型预测控制的最优权重自适应
Constraint-Driven Optimal Control for Emergent Swarming and Predator Avoidance
紧急蜂群和躲避捕食者的约束驱动最优控制
Re-Routing Strategy of Connected and Automated Vehicles Considering Coordination at Intersections
  • DOI:
    10.23919/acc55779.2023.10156555
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heeseung Bang;Andreas A. Malikopoulos
  • 通讯作者:
    Heeseung Bang;Andreas A. Malikopoulos
A Research and Educational Robotic Testbed for Real-Time Control of Emerging Mobility Systems: From Theory to Scaled Experiments [Applications of Control]
  • DOI:
    10.1109/mcs.2022.3209056
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Behdad Chalaki;Logan E. Beaver;A. Mahbub;Heeseung Bang;Andreas A. Malikopoulos
  • 通讯作者:
    Behdad Chalaki;Logan E. Beaver;A. Mahbub;Heeseung Bang;Andreas A. Malikopoulos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Malikopoulos其他文献

Andreas Malikopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Malikopoulos', 18)}}的其他基金

Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant
NRI: Addressing Safe Interaction Between Autonomous and Human-Driven Vehicles
NRI:解决自动驾驶和人类驾驶车辆之间的安全交互问题
  • 批准号:
    2348381
  • 财政年份:
    2023
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2149520
  • 财政年份:
    2022
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant

相似国自然基金

Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    EU-Funded
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
  • 批准号:
    ES/Z502789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Research Grant
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
  • 批准号:
    EP/Y023250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/S034420/2
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Fellowship
A MISSING LINK between continental shelves and the deep sea: Addressing the overlooked role of land-detached submarine canyons
大陆架和深海之间缺失的联系:解决与陆地无关的海底峡谷被忽视的作用
  • 批准号:
    NE/X014975/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Research Grant
A study of in-school in-service training for HRTs and senka teachers, addressing teacher training needs.
针对 HRT 和 Senka 教师的校内在职培训研究,解决教师培训需求。
  • 批准号:
    24K04150
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336368
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Standard Grant
CAREER: CAS-Climate: Addressing Climate Change Impacts on Urban Water Affordability
职业:CAS-气候:应对气候变化对城市水承受能力的影响
  • 批准号:
    2337668
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
S-STEM: Addressing Disparities in STEM Educational Access and Outcomes among Low-Income Students
S-STEM:解决低收入学生在 STEM 教育机会和成果方面的差异
  • 批准号:
    2322771
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了