CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
职业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
基本信息
- 批准号:2331082
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Per- and polyfluoroalkyl substances (PFAS) are fluorinated organic chemicals that have been manufactured and used in numerous consumer products and industrial applications since the 1940s. During the last two decades, increasing detection of PFAS in surface water, groundwater, soils, sludges, and biosolids has raised significant concerns about their persistence, stability, and adverse impact in the environment including toxicity to living organisms and humans. Conventional water treatment technologies cannot effectively remove and destroy PFAS due to their dilute concentration in contaminated water sources and unique chemical features, including a combination of strong C-F bonds, hydrophobic carbon tails, and hydrophilic terminal head groups. The overarching goal of this CAREER project is to lay the foundation for the development of a novel and integrated filtration/catalytic reactor system that can extract and destroy PFAS from contaminated water sources. To advance this goal, the Principal Investigator proposes to use 3D printing to explore the fabrication of adsorptive/catalytic graphene-metal nanohybrid aerogels with high surface area, tunable surface chemistry, and hierarchical and interconnected pores for fast water/mass transport to enable efficient extraction and degradation of PFAS from contaminated water sources. The successful completion of this project will benefit society through the development of new functional materials and fundamental knowledge to advance the development of an integrated filtration and catalytic system that could serve a point-of-use (POU) filter for the treatment of PFAS contaminated water. Further benefits to society will be achieved through student education and training including the mentoring of a graduate student at the University at Buffalo and four middle/school teachers from the Buffalo public schools.Graphene-based aerogels have emerged as promising water treatment platforms due to their unique structural properties including hierarchical/interconnected pores with high surface area that enable fast water/mass transport, and efficient material regeneration and reuse. The integration of photocatalytic and/or redox-active metallic nanomaterials into graphene-based aerogels have the potential to open new opportunities to design and build a new generation of integrated filtration/catalytic systems for the efficient and cost-effective treatment of PFAS contaminated water. As a first step toward this goal, the Principal Investigator (PI) of this CAREER project proposes to leverage a unique 3D printing approach developed in the PI’s laboratory to explore the fabrication of tunable, self-standing, water-stable, and multifunctional photo/redox-catalytic graphene-metal nanohybrid aerogels as safe and effective platform for PFAS treatment and degradation. The specific objectives of the research are to: (1) Develop a 3D printing approach for catalytic graphene-metal nanohybrid aerogels and characterize the aerogel properties using state-of-the-art techniques including X-ray computed tomography with nanoscale resolution; (2) Investigate the relationships between the extents of PFAS sorption and catalytic degradation, graphene aerogel size and porosity, and water chemistry including the effects of pH, ionic strength, and natural organic matter on material performance; and (3) Elucidate the mechanisms of adsorption and degradation of PFAS by the 3D printed graphene aerogels using statistical modeling and a combination of analytical tools including Fourier transformed infrared (FT-IR) spectroscopy, X-Ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy, liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS), and ion chromatography (IC). The successful completion of this project has the potential for transformative impact through the development of new adsorptive/catalytic materials and the generation of new fundamental knowledge to advance the development of integrated filtration/catalytic systems that could serve as point-of-use (POU) filters for the treatment of PFAS contaminated water. To implement the educational and training goals of this CAREER project, the PI will develop a new undergraduate/graduate course at the University at Buffalo that will focus on nanomaterial synthesis, processing, and applications to environmental remediation. In addition, the PI plans to collaborate with teachers from the Buffalo Public Schools (BPS) system to develop lesson plans to teach middle/high school students about environmental pollution and remediation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全氟烷基和多氟烷基物质(PFAS)是自20世纪40年代以来在众多消费品和工业应用中生产和使用的含氟有机化学品。在过去的二十年中,在地表水、地下水、土壤、污泥和生物固体中越来越多地检测到PFAS,这引起了人们对它们的持久性、稳定性和对环境的不利影响(包括对生物和人类的毒性)的极大关注。由于PFAS在污染水源中的浓度较低,以及其独特的化学特性,包括强C-F键、疏水碳尾和亲水末端头基的组合,传统的水处理技术无法有效去除和破坏PFAS。CAREER项目的总体目标是为开发一种新型综合过滤/催化反应器系统奠定基础,该系统可以从受污染的水源中提取和破坏PFAS。为了实现这一目标,首席研究员建议使用3D打印技术来探索吸附/催化石墨烯-金属纳米混合气凝胶的制造,这种气凝胶具有高表面积、可调表面化学、分层和相互连接的孔隙,用于快速水/质量传输,从而能够有效地从受污染的水源中提取和降解PFAS。该项目的成功完成将通过开发新的功能材料和基础知识来促进综合过滤和催化系统的开发,从而造福社会,该系统可以作为处理PFAS污染水的使用点(POU)过滤器。通过学生教育和培训,包括布法罗大学的一名研究生和布法罗公立学校的四名中学教师的指导,将进一步为社会带来好处。基于石墨烯的气凝胶由于其独特的结构特性,包括具有高表面积的分层/互连孔隙,可实现快速的水/质量传输,以及高效的材料再生和再利用,已成为有前途的水处理平台。将光催化和/或氧化还原活性金属纳米材料集成到石墨烯基气凝胶中,有可能为设计和构建新一代集成过滤/催化系统提供新的机会,以高效和经济地处理PFAS污染的水。作为实现这一目标的第一步,该CAREER项目的首席研究员(PI)建议利用PI实验室开发的独特3D打印方法,探索可调、自立、水稳定、多功能光/氧化还原催化石墨烯-金属纳米混合气凝胶的制造,作为PFAS处理和降解的安全有效平台。该研究的具体目标是:(1)开发一种催化石墨烯-金属纳米混合气凝胶的3D打印方法,并使用最先进的技术(包括纳米级分辨率的x射线计算机断层扫描)表征气凝胶的性质;(2)研究PFAS吸附和催化降解程度、石墨烯气凝胶尺寸和孔隙度以及水化学(包括pH、离子强度和天然有机物对材料性能的影响)之间的关系;(3)利用统计建模和傅立叶变换红外(FT-IR)光谱、x射线光电子能谱(XPS)、电子顺磁共振(EPR)光谱、液相色谱-高分辨率质谱(LC-HRMS)和离子色谱(IC)等分析工具的结合,阐明3D打印石墨烯气凝胶对PFAS的吸附和降解机制。该项目的成功完成有可能通过开发新的吸附/催化材料和产生新的基础知识来推动集成过滤/催化系统的开发,这些系统可以作为处理PFAS污染水的使用点(POU)过滤器。为了实现这个职业项目的教育和培训目标,PI将在布法罗大学开发一门新的本科/研究生课程,重点是纳米材料的合成、加工和环境修复应用。此外,PI计划与布法罗公立学校(BPS)系统的教师合作,制定课程计划,向初高中学生讲授环境污染和补救措施。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nirupam Aich其他文献
Balancing sustainability goals and treatment efficacy for PFAS removal from water
平衡可持续性目标与从水中去除全氟烷基物质的处理效果
- DOI:
10.1038/s41545-024-00427-1 - 发表时间:
2024-12-19 - 期刊:
- 影响因子:11.400
- 作者:
Md. Moshiur Rahman Tushar;Zaki Alam Pushan;Nirupam Aich;Lewis S. Rowles - 通讯作者:
Lewis S. Rowles
Preparation of non-aggregating aqueous fullerenes in highly saline solutions with a biocompatible non-ionic polymer
用生物相容性非离子聚合物在高盐溶液中制备非聚集水性富勒烯
- DOI:
10.1088/0957-4484/24/39/395602 - 发表时间:
2013 - 期刊:
- 影响因子:3.5
- 作者:
Nirupam Aich;Linkel K. Boateng;Joseph R. V. Flora;Navid B. Saleh - 通讯作者:
Navid B. Saleh
Using deep eutectic solvents for the <em>in-situ</em> synthesis of graphene-metal nanohybrids and nanocomposite membranes for dye desalination
- DOI:
10.1016/j.jece.2022.109101 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:
- 作者:
Novin Mehrabi;Nirupam Aich - 通讯作者:
Nirupam Aich
Application of Nanozerovalent Iron for Water Treatment and Soil Remediation: Emerging Nanohybrid Approach and Environmental Implications
纳米零价铁在水处理和土壤修复中的应用:新兴纳米混合方法及其环境影响
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nirupam Aich;C. Su;Ijung Kim;Arvid Masud - 通讯作者:
Arvid Masud
Probing Heterogeneity in Bovine Enamel Composition through Nanoscale Chemical Imaging using Atom Probe Tomography
- DOI:
10.1016/j.archoralbio.2020.104682 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:
- 作者:
Olivia Licata;Upoma Guha;Jonathan D. Poplawsky;Nirupam Aich;Baishakhi Mazumder - 通讯作者:
Baishakhi Mazumder
Nirupam Aich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nirupam Aich', 18)}}的其他基金
Collaborative Research: Transformation, interaction and toxicity of emerging 2D nanomaterials free-standing and embedded onto nanocomposite membranes for PFAS degradation
合作研究:新兴二维纳米材料独立式和嵌入纳米复合膜上用于 PFAS 降解的转化、相互作用和毒性
- 批准号:
2227942 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Transformation, interaction and toxicity of emerging 2D nanomaterials free-standing and embedded onto nanocomposite membranes for PFAS degradation
合作研究:新兴二维纳米材料独立式和嵌入纳米复合膜上用于 PFAS 降解的转化、相互作用和毒性
- 批准号:
2324853 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
事业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
- 批准号:
2145128 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
- 批准号:JCZRLH202500778
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D细胞球来源的凋亡小体修饰间充质干细胞的制备及“内外兼修”策略的构建用于脊髓损伤修复的作用机制研究
- 批准号:QN25H060008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
- 批准号:2025JJ60269
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
- 批准号:2025JJ80409
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
- 批准号:2025JJ70487
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多级结构仿生3D打印生物陶瓷调控
PI3K/Akt信号通路介导细胞应激反应促
进血管化骨再生的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 50万 - 项目类别:
Studentship
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
- 批准号:
2333306 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Cooperative Agreement
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
- 批准号:
24K20065 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Empowering Wearable Smart Devices with 3D Printed Energy Storage
通过 3D 打印能量存储为可穿戴智能设备提供支持
- 批准号:
DP240100892 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
- 批准号:
DE240100917 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Early Career Researcher Award
RII Track-4:NSF:Planetary Robotic Construction on the Moon and Mars Using 3D Printed Waterless Concrete
RII Track-4:NSF:使用 3D 打印无水混凝土在月球和火星上进行行星机器人施工
- 批准号:
2327469 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SBIR Phase I: CAS: Biomimetic 3D Printed Metal Mold to Mass Produce Dry-Pressed, Modular, Biophilic Concrete Reef Substrate
SBIR 第一阶段:CAS:仿生 3D 打印金属模具,用于批量生产干压、模块化、亲生物混凝土珊瑚礁基底
- 批准号:
2334667 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery
职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料
- 批准号:
2339254 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track M: Biofilm-based Corrosion Control using 3D Printed Biotechnology
NSF 融合加速器轨道 M:使用 3D 打印生物技术进行基于生物膜的腐蚀控制
- 批准号:
2344389 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Development of a 3D-printed anisotropic heart-on-a-chip for drug screening applications
开发用于药物筛选应用的 3D 打印各向异性芯片心脏
- 批准号:
EP/X02721X/2 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Fellowship