CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
职业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
基本信息
- 批准号:2331082
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Per- and polyfluoroalkyl substances (PFAS) are fluorinated organic chemicals that have been manufactured and used in numerous consumer products and industrial applications since the 1940s. During the last two decades, increasing detection of PFAS in surface water, groundwater, soils, sludges, and biosolids has raised significant concerns about their persistence, stability, and adverse impact in the environment including toxicity to living organisms and humans. Conventional water treatment technologies cannot effectively remove and destroy PFAS due to their dilute concentration in contaminated water sources and unique chemical features, including a combination of strong C-F bonds, hydrophobic carbon tails, and hydrophilic terminal head groups. The overarching goal of this CAREER project is to lay the foundation for the development of a novel and integrated filtration/catalytic reactor system that can extract and destroy PFAS from contaminated water sources. To advance this goal, the Principal Investigator proposes to use 3D printing to explore the fabrication of adsorptive/catalytic graphene-metal nanohybrid aerogels with high surface area, tunable surface chemistry, and hierarchical and interconnected pores for fast water/mass transport to enable efficient extraction and degradation of PFAS from contaminated water sources. The successful completion of this project will benefit society through the development of new functional materials and fundamental knowledge to advance the development of an integrated filtration and catalytic system that could serve a point-of-use (POU) filter for the treatment of PFAS contaminated water. Further benefits to society will be achieved through student education and training including the mentoring of a graduate student at the University at Buffalo and four middle/school teachers from the Buffalo public schools.Graphene-based aerogels have emerged as promising water treatment platforms due to their unique structural properties including hierarchical/interconnected pores with high surface area that enable fast water/mass transport, and efficient material regeneration and reuse. The integration of photocatalytic and/or redox-active metallic nanomaterials into graphene-based aerogels have the potential to open new opportunities to design and build a new generation of integrated filtration/catalytic systems for the efficient and cost-effective treatment of PFAS contaminated water. As a first step toward this goal, the Principal Investigator (PI) of this CAREER project proposes to leverage a unique 3D printing approach developed in the PI’s laboratory to explore the fabrication of tunable, self-standing, water-stable, and multifunctional photo/redox-catalytic graphene-metal nanohybrid aerogels as safe and effective platform for PFAS treatment and degradation. The specific objectives of the research are to: (1) Develop a 3D printing approach for catalytic graphene-metal nanohybrid aerogels and characterize the aerogel properties using state-of-the-art techniques including X-ray computed tomography with nanoscale resolution; (2) Investigate the relationships between the extents of PFAS sorption and catalytic degradation, graphene aerogel size and porosity, and water chemistry including the effects of pH, ionic strength, and natural organic matter on material performance; and (3) Elucidate the mechanisms of adsorption and degradation of PFAS by the 3D printed graphene aerogels using statistical modeling and a combination of analytical tools including Fourier transformed infrared (FT-IR) spectroscopy, X-Ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy, liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS), and ion chromatography (IC). The successful completion of this project has the potential for transformative impact through the development of new adsorptive/catalytic materials and the generation of new fundamental knowledge to advance the development of integrated filtration/catalytic systems that could serve as point-of-use (POU) filters for the treatment of PFAS contaminated water. To implement the educational and training goals of this CAREER project, the PI will develop a new undergraduate/graduate course at the University at Buffalo that will focus on nanomaterial synthesis, processing, and applications to environmental remediation. In addition, the PI plans to collaborate with teachers from the Buffalo Public Schools (BPS) system to develop lesson plans to teach middle/high school students about environmental pollution and remediation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自1940年代以来,氟烷基物质(PFA)是氟化有机化学物质,并在众多消费产品和工业应用中使用。在过去的二十年中,地表水,地下水,土壤,污泥和生物固体在地表水,地下水,土壤,污泥和生物固体中的发现增加了对环境中的持久性,稳定性和不利影响的重大关注,包括对生物和人类的毒性。传统的水处理技术由于其在受污染的水源和独特的化学特征中的稀释浓度而无法有效地消除和破坏PFA,包括强C-F键,疏水性碳尾和亲水终末群的组合。该职业项目的总体目标是为开发新颖的综合过滤/催化反应堆系统奠定基础,该系统可以从受污染的水源中提取和破坏PFA。为了促进这一目标,首席研究员的建议使用3D打印来探索具有高表面积,可调表面化学的吸附性/催化石墨烯 - 金属纳米纳米杂交气凝胶,以及可调节的表面化学反应,以及用于快速水/弥撒运输的层次和互连的孔,以有效地提取和从CORTAMAMIND PLAS中脱水。该项目的成功完成将通过开发新功能材料和基本知识来使社会受益,以促进综合过滤和催化系统的开发,该系统可以提供使用点(POU)过滤器,以治疗PFA污染的水。将通过学生的教育和培训来实现进一步的好处,包括在布法罗大学的一名研究生和布法罗公立学校的四名中学/学校老师的心理。基于graphene的Aerogels由于其独特的结构特性而成为了承诺的水处理平台,这是由于其独特的结构性特性,包括具有高表面积/互连的孔,包括高表面积的水平,这些孔具有高水平的水平/互连的水平,因此可以实现快速的水/质量运输/质量运输和重新恢复,并有效地重新定期,并有效地重新定期。光催化和/或氧化还原活性金属纳米材料与基于石墨烯的气凝胶的整合具有开放新的机会,以设计和建立新一代的集成过滤/催化系统,以有效且具有成本效益的PFAS污染水。作为实现这一目标的第一步,该职业项目建议的首席研究员(PI)旨在利用Pi的实验室中开发的独特的3D打印方法,以探索可调,自动,水稳定和多功能的照片/多功能式催化核烯醇烯基烯烯基纳米杂交凝胶的结构。研究的具体目标是:(1)开发一种用于催化石墨烯 - 金属纳米杂交气凝胶的3D打印方法,并使用包括X射线计算机层摄影以及纳米级分辨率在内的最先进的技术来表征气囊特性; (2)研究PFAS吸附与催化降解,石墨烯气瓶大小和孔隙率以及水化学之间的关系之间的关系,包括pH,离子强度和自然有机物对材料性能的影响; (3)使用统计建模和包括傅立叶变换红外(FT-IR)光谱,X射线光电光谱(XPS),电子磁值(Elecomplosprospy(EPRROSCORSE)(EPR)频谱(EPR)频谱(EPR),使用统计建模和分析工具的组合,阐明了3D印刷石墨烯气凝胶对PFA的吸附和降解的机制,以及光谱法(LC-HRMS)和离子色谱法(IC)。该项目的成功完成通过开发新的吸附/催化材料以及产生新的基本知识来推动综合过滤/催化系统的发展,从而产生变革性的影响,这些知识可以用作PFAS污染水的处理点(POU)过滤器。为了实施该职业项目的教育和培训目标,PI将在布法罗大学开发新的本科/研究生课程,重点关注纳米材料的综合,加工以及对环境修复的应用。此外,PI计划与Buffalo公立学校(BPS)系统的老师合作,制定课程计划,以向中学学生传授有关环境污染和补救的知识。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来通过评估来获得的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nirupam Aich其他文献
Probing Heterogeneity in Bovine Enamel Composition through Nanoscale Chemical Imaging using Atom Probe Tomography
- DOI:
10.1016/j.archoralbio.2020.104682 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:
- 作者:
Olivia Licata;Upoma Guha;Jonathan D. Poplawsky;Nirupam Aich;Baishakhi Mazumder - 通讯作者:
Baishakhi Mazumder
Preparation of non-aggregating aqueous fullerenes in highly saline solutions with a biocompatible non-ionic polymer
用生物相容性非离子聚合物在高盐溶液中制备非聚集水性富勒烯
- DOI:
10.1088/0957-4484/24/39/395602 - 发表时间:
2013 - 期刊:
- 影响因子:3.5
- 作者:
Nirupam Aich;Linkel K. Boateng;Joseph R. V. Flora;Navid B. Saleh - 通讯作者:
Navid B. Saleh
Using deep eutectic solvents for the <em>in-situ</em> synthesis of graphene-metal nanohybrids and nanocomposite membranes for dye desalination
- DOI:
10.1016/j.jece.2022.109101 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:
- 作者:
Novin Mehrabi;Nirupam Aich - 通讯作者:
Nirupam Aich
Application of Nanozerovalent Iron for Water Treatment and Soil Remediation: Emerging Nanohybrid Approach and Environmental Implications
纳米零价铁在水处理和土壤修复中的应用:新兴纳米混合方法及其环境影响
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nirupam Aich;C. Su;Ijung Kim;Arvid Masud - 通讯作者:
Arvid Masud
Nirupam Aich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nirupam Aich', 18)}}的其他基金
Collaborative Research: Transformation, interaction and toxicity of emerging 2D nanomaterials free-standing and embedded onto nanocomposite membranes for PFAS degradation
合作研究:新兴二维纳米材料独立式和嵌入纳米复合膜上用于 PFAS 降解的转化、相互作用和毒性
- 批准号:
2227942 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Transformation, interaction and toxicity of emerging 2D nanomaterials free-standing and embedded onto nanocomposite membranes for PFAS degradation
合作研究:新兴二维纳米材料独立式和嵌入纳米复合膜上用于 PFAS 降解的转化、相互作用和毒性
- 批准号:
2324853 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
事业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
- 批准号:
2145128 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Developing Ultrasound-Programmable 3D-Printed Biomaterials for Spatiotemporal Control of Gene Delivery
职业:开发用于基因传递时空控制的超声波可编程 3D 打印生物材料
- 批准号:
2339254 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: 3D Printed Carbon-Metal Nanohybrid Aerogels for Highly Efficient Adsorptive/Catalytic Removal of PFASs
事业:3D 打印碳金属纳米杂化气凝胶,用于高效吸附/催化去除 PFAS
- 批准号:
2145128 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Dynamic, Cellularized, 3D Printed Model Development for Aerosol Targeting in Pediatric JORRP Patients
用于儿科 JORRP 患者气溶胶靶向的动态、细胞化、3D 打印模型开发
- 批准号:
10317899 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Dynamic, Cellularized, 3D Printed Model Development for Aerosol Targeting in Pediatric JORRP Patients
用于儿科 JORRP 患者气溶胶靶向的动态、细胞化、3D 打印模型开发
- 批准号:
10514527 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
CAREER: An Inclusive Approach to Diversity Inspired Design on Novel 3D Printed Electric Motors
职业生涯:新型 3D 打印电动机的多样性启发设计的包容性方法
- 批准号:
2045776 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant