Robust Post-Selection Inference with Application to Subgroup Analysis

稳健的选择后推理及其在子组分析中的应用

基本信息

  • 批准号:
    2015325
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Researchers have been facing challenges from high-dimensional data that contain many different characteristics for each subject. For example, biomedical scientists analyze tens of thousands of genomes to determine the cause of disease and find the most promising treatments; social scientists study differential policy impacts by leveraging vast amounts of personal data gathered from social media. This project lays out two lines of research aimed at developing valid statistical inference in this challenging environment. The insights and tools developed from this project would contribute to the advancement of a wide variety of other disciplines, including economics, education, health care, and biomedical sciences. In addition, graduate students will be engaged in the project to study the statistical guarantees and to develop relevant software packages for the research. Since the project develops modern statistical methodologies with substantial applications, it will be suitable for training graduate students with a broad range of skills.This project addresses two research problems and seeks to provide insights, theory and tools for more informed decision making in high dimensions. The first problem focuses on studying the treatment effect heterogeneity. Quantification and characterization of heterogeneous treatment effects play an increasingly important role in evaluating the efficacy of social programs and medical treatments in the presence of high-dimensional covariates. In particular, the research will develop efficient procedures for estimating heterogeneous quantile treatment effects and subgroup average treatment effects via covariate balancing. The second problem focuses on studying the validity and invalidity of data splitting for conducting inference with high-dimensional data. The project will address the issue of “random-splitting bias” in estimating the regression coefficients when the number of dummy/imbalanced variables is sizable. To overcome this challenge, the project will develop a guided data splitting framework that splits the data into more balanced halves. Because the usage of random data splitting goes beyond post-selection inference, the framework developed and the possible solutions derived from it are broadly applicable to many data-driven investigations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究人员一直面临着来自高维数据的挑战,这些数据包含每个受试者的许多不同特征。例如,生物医学科学家分析数以万计的基因组,以确定疾病的原因,并找到最有希望的治疗方法;社会科学家通过利用从社交媒体收集的大量个人数据来研究不同的政策影响。该项目列出了两条研究路线,目的是在这一具有挑战性的环境中发展有效的统计推断。从这个项目开发的洞察力和工具将有助于推进广泛的其他学科,包括经济、教育、医疗保健和生物医学科学。此外,研究生将参与研究统计保证的项目,并为研究开发相关软件包。由于该项目开发了具有实质性应用的现代统计方法,它将适合培养具有广泛技能的研究生。该项目解决了两个研究问题,并试图为更明智的高维度决策提供见解、理论和工具。第一个问题是研究治疗效果的异质性。在高维协变量存在的情况下,异质性治疗效果的量化和表征在评估社会计划和医疗的有效性方面发挥着越来越重要的作用。特别是,这项研究将开发有效的程序,通过协变量平衡来估计不同分位数处理效果和亚组平均处理效果。第二个问题是研究数据分割对高维数据进行推理的有效性和无效性。该项目将解决在虚拟/不平衡变量数量较多时估计回归系数时的“随机分裂偏差”问题。为了克服这一挑战,该项目将开发一个指导性数据拆分框架,将数据拆分成更平衡的两部分。由于随机数据拆分的使用超出了选择后推理的范围,所开发的框架及其衍生的可能解决方案广泛适用于许多数据驱动的调查。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inference on the best policies with many covariates
推断具有许多协变量的最佳策略
  • DOI:
    10.1016/j.jeconom.2022.06.013
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Wei, Waverly;Zhou, Yuqing;Zheng, Zeyu;Wang, Jingshen
  • 通讯作者:
    Wang, Jingshen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingshen Wang其他文献

Comparative study of a nano-bacterial rat kidney stone model and the traditional ethylene glycol rat kidney stone model
纳米细菌大鼠肾结石模型与传统乙二醇大鼠肾结石模型的对比研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Qian;Jingshen Wang;Z. Hao;Yuan Wang;Heng Yang;Yongle Li;Minghui Tan;Guoxi Zhang;X. Zou
  • 通讯作者:
    X. Zou
Systematic identification of modifiable risk factors and drug repurposing options for Alzheimer's disease: Mendelian randomization analyses
系统识别阿尔茨海默病的可改变风险因素和药物再利用选择:孟德尔随机分析
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chong Wu;Lang Wu;Jingshen Wang;Lifeng Lin;Yanming Li;Qing Lu;Hong
  • 通讯作者:
    Hong
Rudi Kundini, Pamoja Kundini (RKPK): study protocol for a hybrid type 1 randomized effectiveness-implementation trial using data science and economic incentive strategies to strengthen the continuity of care among people living with HIV in Tanzania
Rudi Kundini、Pamoja Kundini (RKPK):使用数据科学和经济激励策略来加强坦桑尼亚艾滋病毒感染者护理连续性的 1 型混合随机有效性实施试验的研究方案
  • DOI:
    10.1186/s13063-024-07960-x
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jillian L Kadota;Laura Packel;Matilda Mlowe;Nzovu K Ulenga;Natalino Mwenda;P. Njau;William H Dow;Jingshen Wang;Amon Sabasaba;Sandra I McCoy
  • 通讯作者:
    Sandra I McCoy
Debiased inference on heterogeneous quantile treatment effects with regression rank scores
使用回归排名分数对异质分位数治疗效果进行去偏推断
Preoperative risk factors associated with urosepsis following percutaneous nephrolithotomy: a meta-analysis
经皮肾镜取石术后尿脓毒症相关的术前危险因素:一项荟萃分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Hao;Jingshen Wang;Qinzhang Wang;Guangchao Luan;Biao Qian
  • 通讯作者:
    Biao Qian

Jingshen Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingshen Wang', 18)}}的其他基金

CAREER: Adaptive experiments towards learning treatment effect heterogeneity
职业:学习治疗效果异质性的适应性实验
  • 批准号:
    2239047
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
ATD: Algorithms for Real-time Dynamic Risk Identification with Statistical Confidence
ATD:具有统计置信度的实时动态风险识别算法
  • 批准号:
    2220537
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

基于可见光环化反应的Post-Iboga类吲哚生物碱不对称集群合成
  • 批准号:
    22361048
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
AGB和post-AGB星的星周尘埃与实测红外色指数
  • 批准号:
    10973004
  • 批准年份:
    2009
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
Post-WIMP用户界面模型和支撑技术研究
  • 批准号:
    60503054
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Post-copulatory sexual selection in insects: discovering new mechanisms of male and female mate choice
昆虫交配后性选择:发现雄性和雌性择偶的新机制
  • 批准号:
    2884069
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Studentship
Generation and control of multi-photon quantum entangled states by pre-post selection
通过前后选择产生和控制多光子量子纠缠态
  • 批准号:
    22KJ1874
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Developing variable selection methods and post-selection inference under double-descent phenomena
开发双下降现象下的变量选择方法和选择后推理
  • 批准号:
    23K18471
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Developing user-centric training in rigorous research: post-selection inference, publication bias, and critical evaluation of statistical claims.
在严谨的研究中开展以用户为中心的培训:选择后推断、发表偏见和统计声明的批判性评估。
  • 批准号:
    10721491
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
Selection of post-operative pain control strategies in cardiac surgery to facilitate enhanced recovery
选择心脏手术术后疼痛控制策略以促进康复
  • 批准号:
    486641
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Studentship Programs
Post-spawning sexual selection and reproductive fitness in fishes
鱼类产卵后性选择和生殖健康
  • 批准号:
    RGPIN-2017-06285
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring genomic history and adaptive selection in a post-medieval population from Spitalfields, London, using ancient DNA.
利用古代 DNA 探索伦敦斯皮塔佛德 (Spitalfields) 中世纪后人群的基因组历史和适应性选择。
  • 批准号:
    2708786
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Studentship
Post-spawning sexual selection and reproductive fitness in fishes
鱼类产卵后性选择和生殖健康
  • 批准号:
    RGPIN-2017-06285
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Individual
Post-Selection Inference for Survival Outcomes in Precision Medicine
精准医学中生存结果的选择后推断
  • 批准号:
    2112938
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Post-spawning sexual selection and reproductive fitness in fishes
鱼类产卵后性选择和生殖健康
  • 批准号:
    RGPIN-2017-06285
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了