MCA: Data Science for Global Change-Does Plant Diversity Imply Forest Resilience?
MCA:全球变化的数据科学——植物多样性是否意味着森林恢复力?
基本信息
- 批准号:2220980
- 负责人:
- 金额:$ 29.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Two ongoing global crises – climate warming and species loss – make it difficult to predict how our planet’s forests will look in the future. Are species-rich forests more resilient to changing climate, or more vulnerable to change? Should we expect greater changes in species-rich tropical forests, or in species-poor northern conifer forests? All forests deliver important ecosystem services to humanity as they moderate climate and provide wood, clean water, wildlife habitat, and livelihoods and recreation opportunities. This project will help us understand how the world’s forests are changing and what role biodiversity plays in forests’ resilience to changing climate. This work will focus on the most vulnerable stage in forest development – tree seedlings – to create new conceptual and statistical models to aid forest management and conservation in varied settings across the globe. The project will also compare how different countries monitor early stages of forest change and will contribute to the sharing of best practices and the best science across borders. The findings will be widely disseminated to major agencies in forest management and monitoring. Ongoing societal conversations about climate change and biodiversity loss will be aided by sharing the project’s findings with the public via interviews, press releases, and lectures at regional high schools and nature centers. Advanced training in ecology, forest monitoring, and data science will be given to 15-30 graduate students, including those from traditionally underrepresented backgrounds. Long-term impacts will include a newly developed course, new teaching materials, and new study plots established to monitor future forest changes.As global forest ecosystems experience interconnected contemporary crises – climate change and biodiversity loss – it is increasingly important to understand if forests composed of more species are also more resilient to changing climate. This proposal will help answer this question by studying how forests change in time and space along the global latitudinal diversity gradient (LDG), focusing particularly on the early stages of forest change (tree seedlings) that influence future forest character. The proposal seeks to use diverse data science approaches to help us understand how tree seedling banks change along the LDG with climate and how they relate to characteristics (such as diversity and resilience to change) of forest overstory and understory plant communities. We will specifically address key aspects of tree seedling bank dynamics such as tree seedling diversity, resilience to change, abundance, and composition. The project integrates four activities: (1) fine-scale analyses of field data from sites along the tropical-temperate-boreal gradient, (2) broad-scale analyses of forest inventories spanning the LDG (Big Data), (3) systematic review and meta-analysis of published papers, and (4) review and synthesis of data science approaches used for monitoring tree seedlings in major forest monitoring systems of the world. Data will be analyzed using generalized linear mixed models (GLMMs) and meta-analyses. The proposed project will address decades old, yet still unresolved discussions of the effects of diversity on forest ecosystem resilience and stability, while focusing on the most sensitive stage of forest dynamics using modern data science approaches along the global diversity gradient.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
正在发生的两场全球危机--气候变暖和物种灭绝--使得我们很难预测我们这个星球的森林未来会是什么样子。物种丰富的森林对气候变化的适应能力更强,还是更容易受到变化的影响?我们应该期待物种丰富的热带森林或物种匮乏的北部针叶林出现更大的变化吗?所有森林都为人类提供了重要的生态系统服务,因为它们缓和了气候,提供了木材、干净的水、野生动物栖息地以及生计和娱乐机会。这个项目将帮助我们了解世界森林是如何变化的,以及生物多样性在森林对气候变化的适应能力方面发挥了什么作用。这项工作将侧重于森林发展中最脆弱的阶段--树苗--以创建新的概念和统计模型,以帮助全球不同环境下的森林管理和保护。该项目还将比较不同国家如何监测森林变化的早期阶段,并将有助于跨国界分享最佳做法和最佳科学。调查结果将广泛传播给森林管理和监测方面的主要机构。正在进行的关于气候变化和生物多样性丧失的社会对话将通过采访、新闻稿以及在地区高中和自然中心的讲座与公众分享该项目的发现,这将得到帮助。15-30名研究生将接受生态学、森林监测和数据科学方面的高级培训,其中包括那些来自传统上代表性不足的背景的学生。长期影响将包括新开发的课程、新的教材和为监测未来森林变化而建立的新的研究小区。随着全球森林生态系统经历相互关联的当代危机--气候变化和生物多样性丧失--理解由更多物种组成的森林是否也更能适应气候变化,变得越来越重要。这项建议将通过研究森林如何沿全球纬度多样性梯度(LDG)在时间和空间上变化来帮助回答这个问题,特别侧重于影响未来森林特征的森林变化的早期阶段(树苗)。该提案寻求使用不同的数据科学方法来帮助我们了解树苗银行如何随着气候变化而变化,以及它们如何与森林覆盖层和林下植物群落的特征(如多样性和对变化的适应能力)相关联。我们将具体讨论树苗银行动态的关键方面,如树苗多样性、对变化的适应能力、丰富度和组成。该项目包括四项活动:(1)对热带-温带-北方梯度沿线地点的实地数据进行精细分析;(2)对横跨大数据的森林清单进行广泛分析;(3)对已发表的论文进行系统审查和综合分析;(4)审查和综合世界主要森林监测系统中用于监测树苗的数据科学方法。数据将使用广义线性混合模型(GLMM)和荟萃分析进行分析。拟议的项目将解决几十年来仍未解决的关于多样性对森林生态系统弹性和稳定性的影响的讨论,同时关注使用全球多样性梯度上的现代数据科学方法进行森林动态最敏感的阶段。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Dovciak其他文献
Environmental Change Drivers Reduce Sapling Layer Diversity in Sugar Maple-Beech Forests of Eastern North America
- DOI:
10.1007/s10021-024-00930-z - 发表时间:
2024-10-28 - 期刊:
- 影响因子:3.300
- 作者:
Michael R. Zarfos;Gregory B. Lawrence;Colin M. Beier;Blair D. Page;Todd C. McDonnell;Timothy J. Sullivan;Mariann T. Garrison-Johnston;Martin Dovciak - 通讯作者:
Martin Dovciak
Harvestmen (Opiliones) community structure varies across forest-meadow ecotones in a biodiverse karst region
- DOI:
10.1007/s10531-021-02135-5 - 发表时间:
2021-02-10 - 期刊:
- 影响因子:3.100
- 作者:
Slavomír Stašiov;Vladimír Kubovčík;Marek Čiliak;Andrea Diviaková;Ivan Lukáčik;Martin Dovciak - 通讯作者:
Martin Dovciak
Hedgerows support rich communities of harvestmen (Opiliones) in upland agricultural landscape
- DOI:
10.1016/j.baae.2020.05.001 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:
- 作者:
Slavomír Stašiov;Andrea Diviaková;Marek Svitok;Milan Novikmec;Martin Dovciak - 通讯作者:
Martin Dovciak
Martin Dovciak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Dovciak', 18)}}的其他基金
Linking Forest Regeneration, Plant Distributions, and Ecotone Dynamics in Changing Mountain Environments
将不断变化的山区环境中的森林再生、植物分布和生态交错带动态联系起来
- 批准号:
1759724 - 财政年份:2018
- 资助金额:
$ 29.3万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Data Science Course Hub: ボトムアップアプローチによるデータサイエンス教育の改善
数据科学课程中心:通过自下而上的方法改进数据科学教育
- 批准号:
24K15234 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
- 批准号:
2339025 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Continuing Grant
CREST HBCU-RISE: Advancing Theoretical Artificial Intelligence Infrastructure for Modern Data Science Challenges
CREST HBCU-RISE:推进理论人工智能基础设施应对现代数据科学挑战
- 批准号:
2409093 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Continuing Grant
Conference: SDSU Data Science Symposium
会议:SDSU 数据科学研讨会
- 批准号:
2409890 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: Enhancing network connectivity for data-intensive, multi-institution collaborative science
CC* 网络基础设施:增强数据密集型、多机构协作科学的网络连接
- 批准号:
2346718 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
Overcoming Programming Barriers for Non-Computing Majors in Data Science
克服数据科学非计算专业的编程障碍
- 批准号:
2336929 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
Fair and modular blockchain data infrastructure for open science and society (FairOnChain)
用于开放科学和社会的公平和模块化区块链数据基础设施(FairOnChain)
- 批准号:
EP/Y036247/1 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Research Grant
Building an agenda and community of biodiversity data science
建立生物多样性数据科学议程和社区
- 批准号:
2329533 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
Community Impact with Teacher Leaders in Data Science and Mathematical Modeling
数据科学和数学建模领域教师领导者的社区影响
- 批准号:
2345194 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Continuing Grant
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant














{{item.name}}会员




