Collaborative Research: High-Throughput Exploration of Microstructure-Sensitive Design for Steel Microstructure Optimization to Enhance its Corrosion Resistance in Concrete
合作研究:微观结构敏感设计的高通量探索,用于优化钢微观结构以增强其在混凝土中的耐腐蚀性能
基本信息
- 批准号:2221098
- 负责人:
- 金额:$ 24.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Corrosion of carbon steel in concrete is the most common and costly deterioration mechanism of steel-reinforced concrete structures. Corrosion costs in US are equivalent to about 3 to 4 percent of the gross domestic product (GDP). The annual cost of corrosion of just highway bridges to the US economy is estimated to be US$23-31 billion. Furthermore, corrosion reduces the lifetime of civil infrastructure and leads to increased use of material. This, in turn, increases the carbon footprint of the construction industry and affects climate change mitigation strategies. Thus, it is critical to develop and utilize innovative, inexpensive, and effective corrosion-resistant steel to minimize this burden on the US economy and on the environment. Carbon steel is the most used reinforcing material in concrete due to its availability and low cost. The central hypothesis underpinning this collaborative research project is that the carbon steel microstructure can be optimized to enhance its corrosion resistance in a concrete environment. Studying the quantitative correlations between microstructure and corrosion properties is challenging since the corresponding microstructure design space is very large. Traditional design approaches are woefully inadequate for systematically exploring such large design spaces and identifying optimal solutions. Microstructure-sensitive design and materials knowledge systems employ a comprehensive and quantitative microstructure treatment, which together with emergent machine learning tools can address the grand challenge described above. An equally important and novel component of this project lies in exploiting high-throughput strategies to collect and curate high-value experimental data. In order to address this need, novel high-throughput strategies, both in synthesizing material sample libraries spanning a wide range of distinct microstructures and evaluating their microstructures and corrosion performances, will be designed and implemented. This research aims to have far-reaching social, political, and economic impacts by enabling researchers and material developers with the fundamental tools to hypothesize, design, optimize, and test new materials to mitigate issues associated with steel corrosion in reinforced concrete structures in a cost-effective way. The scientific novelty of the approach lies in its ability to predict the influence of the microstructure of carbon steel on its corrosion performance. These insights can be used to tune the microstructure to optimize the corrosion resistance of the steel without changing the steel chemistry. The main impetus for this research comes from the need to (1) elucidate the poorly understood linkages between corrosion and the microstructure of carbon steel in an alkaline concrete environment, and (2) bridge a critical knowledge gap related to optimizing the microstructure-sensitive corrosion resistance of steels. This work is focused on four thrusts: (1) high-throughput synthesis of samples, (2) high-throughput characterization of corrosion performance, (3) microstructure feature engineering and building machine learning models, and (4) designing and fabricating steel with an optimal microstructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
碳钢在混凝土中的腐蚀是钢筋混凝土结构最常见和代价最高的劣化机制。美国的腐蚀成本相当于国内生产总值(GDP)的3%至4%。仅公路桥梁的腐蚀每年给美国经济造成的损失估计为230亿至310亿美元。此外,腐蚀缩短了民用基础设施的寿命,并导致材料使用量增加。这反过来又增加了建筑业的碳足迹,并影响气候变化缓解战略。因此,开发和利用创新、廉价和有效的耐腐蚀钢以最大限度地减少对美国经济和环境的负担至关重要。由于其可用性和低成本,碳钢是混凝土中最常用的增强材料。支撑这一合作研究项目的核心假设是,可以优化碳钢的微观结构,以提高其在混凝土环境中的耐腐蚀性。研究微观结构和腐蚀性能之间的定量关系具有挑战性,因为相应的微观结构设计空间非常大。传统的设计方法对于系统地探索如此大的设计空间和确定最佳解决方案是远远不够的。微结构敏感设计和材料知识系统采用全面和定量的微结构处理,与新兴的机器学习工具一起可以解决上述重大挑战。该项目的一个同样重要和新颖的组成部分在于利用高通量策略来收集和管理高价值的实验数据。为了满足这一需求,将设计和实施新的高通量策略,包括合成跨越各种不同微观结构的材料样品库,以及评估其微观结构和腐蚀性能。该研究旨在通过使研究人员和材料开发人员能够使用基本工具来假设,设计,优化和测试新材料,以具有成本效益的方式减轻与钢筋混凝土结构中钢筋腐蚀相关的问题,从而产生深远的社会,政治和经济影响。该方法的科学新奇在于它能够预测碳钢的微观结构对其腐蚀性能的影响。这些见解可用于调整微观结构,以优化钢的耐腐蚀性,而不改变钢的化学性质。这项研究的主要动力来自于需要(1)阐明碱性混凝土环境中碳钢的腐蚀和微观结构之间的联系,以及(2)弥合与优化钢的微观结构敏感耐腐蚀性相关的关键知识差距。这项工作的重点是四个方面:(1)样品的高通量合成,(2)腐蚀性能的高通量表征,(3)微观结构特征工程和建立机器学习模型,以及(4)该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Poursaee其他文献
Machine learning-based corrosion rate prediction of steel embedded in soil
基于机器学习的土壤中嵌入钢的腐蚀速率预测
- DOI:
10.1038/s41598-024-68562-w - 发表时间:
2024-08-06 - 期刊:
- 影响因子:3.900
- 作者:
Zheng Dong;Ling Ding;Zhou Meng;Ke Xu;Yongqi Mao;Xiangxiang Chen;Hailong Ye;Amir Poursaee - 通讯作者:
Amir Poursaee
Amir Poursaee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Poursaee', 18)}}的其他基金
EAGER: Corrosion Reduction in Reinforcing Steel of Concrete Structures through Grain Size Alteration
EAGER:通过改变晶粒尺寸减少混凝土结构钢筋的腐蚀
- 批准号:
1552794 - 财政年份:2015
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329087 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Collaborative Research: High-Throughput Exploration of Microstructure-Sensitive Design for Steel Microstructure Optimization to Enhance its Corrosion Resistance in Concrete
合作研究:微观结构敏感设计的高通量探索,用于优化钢微观结构以增强其在混凝土中的耐腐蚀性能
- 批准号:
2221104 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: A High Throughput Science Gateway for the Event Horizon Telescope
合作研究:EAGER:事件视界望远镜的高通量科学网关
- 批准号:
2324672 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: A High Throughput Science Gateway for the Event Horizon Telescope
合作研究:EAGER:事件视界望远镜的高通量科学网关
- 批准号:
2324673 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329089 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323118 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329090 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329088 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323119 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323117 - 财政年份:2023
- 资助金额:
$ 24.52万 - 项目类别:
Standard Grant