Simulating a growing minimal cell: Integrating experiment and theory
模拟生长的最小细胞:实验与理论相结合
基本信息
- 批准号:2221237
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
All cells share a universal, minimal set of biological processes essential for life. The search for this set led to the construction of the minimal bacterial cell JCVI-syn3A. With 493 genes in a genome of 543 kbp, JCVI-syn3A has a genome smaller than that of any independently-replicating cell found in nature, a robust morphology, and can divide every two hours in a stress-free laboratory growth medium. Nearly all genes in this minimal cell are essential, and the cell is small enough that a complete description of all cellular functions can be attempted over biological relevant length, time, and concentrations scales by exploiting graphics processing unit (GPU) computing. Recent successes in GPU computing, and 3D imaging have made it now possible to build a whole-cell computational model of this minimal bacterial cell and to investigate what are the rules of life allowing this cell to grow and divide. In this project the investigators construct a whole-cell model coupling all the cellular functions. The outcome of this project will allow the research team to predict cellular behavior under a variety of perturbations, and thus explain how a complete cell works. The educational broader impacts include the training of students and postdoctoral investigators, and outreach to the broader community through workshops and YouTube/VR platforms facilitating the public dissemination of the science.This research project addresses key components needed to make a more complete computational model of a growing minimal cell. Approximately ∼90 out of the 493 genes encode proteins of unclear cellular context, of which 30 were determined to be essential from transposon bombardment experiments. Extension of the current 3D spatial model to encompass the full cell cycle requires new hybrid stochastic-deterministic algorithms to be implemented in the GPU-based Lattice Microbe software and imaging experiments. MINFLUX microscopy will be used to provide data at the enhanced spatial and temporal resolutions needed to construct accurate models of cell growth, division, and DNA replication. The structural and functional characterization of proteins of unclear function, which recent work indicates are required for consistent morphology and division of Syn3A, are needed to extend the model and promise to reveal novel interactions and biochemical reactions. To achieve these goals, the cellular processes of Syn3A will be experimentally measured. The function of unknown genes associated with cell shape and growth will be identified. The organization of transcriptional units and MINFLUX imaging studies of cell division and initiation of DNA replication will be determined. The integration of new heterogeneous data into the existing whole-cell computational models will occur through the develop and implementation growth and cell division kinetic models. In addition, the structure of the 30 essential proteins will be identified. Finally, the gene expression kinetic model will be informed with measured transcriptional units to determine the overall impacts on protein production and the cell. The planned research will be conducted with postdocs and graduate students at the University of Illinois at Urbana-Champaign (UIUC), Johns Hopkins University (JHU), the Synthetic Biology group at JCVI, and collaborators at TU Dresden, Leiden University, and University of GroningenThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
所有的细胞都有一套对生命至关重要的普遍的、最小的生物学过程。对这组的搜索导致了最小细菌细胞JCVI-syn 3A的构建。在543 kbp的基因组中有493个基因,JCVI-syn 3A的基因组比自然界中发现的任何独立复制细胞的基因组都要小,形态健壮,并且可以在无压力的实验室生长培养基中每两小时分裂一次。在这个最小的细胞中几乎所有的基因都是必不可少的,并且细胞足够小,可以通过利用图形处理单元(GPU)计算在生物相关的长度、时间和浓度尺度上尝试对所有细胞功能进行完整描述。最近在GPU计算和3D成像方面取得的成功使得现在可以建立这种最小细菌细胞的全细胞计算模型,并研究允许这种细胞生长和分裂的生命规则。在这个项目中,研究人员构建了一个耦合所有细胞功能的全细胞模型。该项目的成果将使研究团队能够预测各种扰动下的细胞行为,从而解释完整的细胞如何工作。教育方面的广泛影响包括培训学生和博士后研究人员,并通过研讨会和YouTube/VR平台向更广泛的社区推广,促进科学的公开传播。该研究项目解决了制作更完整的生长最小细胞计算模型所需的关键组件。在493个基因中,约有1090个编码不清楚细胞背景的蛋白质,其中30个被确定为转座子轰击实验所必需的。扩展当前的3D空间模型以涵盖整个细胞周期,需要在基于GPU的Lattice Microbe软件和成像实验中实现新的混合随机-确定性算法。MINFLUX显微镜将用于提供增强的空间和时间分辨率所需的数据,以构建细胞生长,分裂和DNA复制的准确模型。最近的工作表明,需要一致的形态和Syn 3A分裂的蛋白质的结构和功能特性不清楚的功能,需要扩展模型,并承诺揭示新的相互作用和生化反应。 为了实现这些目标,Syn 3A的细胞过程将进行实验测量。与细胞形状和生长相关的未知基因的功能将被确定。将确定转录单位的组织和细胞分裂和DNA复制起始的MINFLUX成像研究。将新的异质数据整合到现有的全细胞计算模型中将通过开发和实施生长和细胞分裂动力学模型来实现。此外,还将鉴定30种必需蛋白质的结构。最后,基因表达动力学模型将被告知测量的转录单位,以确定对蛋白质生产和细胞的总体影响。计划中的研究将与伊利诺伊大学厄巴纳-香槟分校(UIUC)、约翰霍普金斯大学(JHU)、JCVI合成生物学小组以及德累斯顿工业大学、莱顿大学、该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zaida Luthey-Schulten其他文献
Single Molecule Views of the Ribosome Assembly
- DOI:
10.1016/j.bpj.2011.11.3512 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Hajin Kim;Sanjaya Abeysirigunawardena;Megan Mayerle;Kaushik Ragunathan;Ke Chen;John Eargle;Zaida Luthey-Schulten;Sarah Woodson;Taekjip Ha - 通讯作者:
Taekjip Ha
Deciphering the influence of genome architecture in minimized bacteria
- DOI:
10.1016/j.bpj.2022.11.2846 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Troy A. Brier;Pratap Venepally;John I. Glass;Zaida Luthey-Schulten - 通讯作者:
Zaida Luthey-Schulten
Direct Measurement of Stepping Dynamics of <em>E. coli</em> UvrD Helicase
- DOI:
10.1016/j.bpj.2019.11.565 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Sean P. Carney;Kevin D. Whitley;Wen Ma;Haifeng Jia;Timothy M. Lohman;Zaida Luthey-Schulten;Yann R. Chemla - 通讯作者:
Yann R. Chemla
Modelling the Genetic Information Processes of a Genetically Minimal Cell
- DOI:
10.1016/j.bpj.2019.11.2563 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Zane R. Thornburg;Marcelo Cardoso dos Reis Melo;David Bianchi;Troy A. Brier;Marian Breuer;Hamilton O. Smith;Clyde A. Hutichison;John I. Glass;Zaida Luthey-Schulten - 通讯作者:
Zaida Luthey-Schulten
Stochastic Spatial Simulation of Genetic Information Processes in the Minimal Cell
- DOI:
10.1016/j.bpj.2020.11.881 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Zane R. Thornburg;Benjamin R. Gilbert;Julio Maia;John E. Stone;Vinson Lam;Elizabeth Villa;Zaida Luthey-Schulten - 通讯作者:
Zaida Luthey-Schulten
Zaida Luthey-Schulten的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zaida Luthey-Schulten', 18)}}的其他基金
Science and Technology Center for Quantitative Cell Biology
定量细胞生物学科技中心
- 批准号:
2243257 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Cooperative Agreement
Collaborative Research: International Physics of Living Systems Graduate Research Network
合作研究:国际生命系统物理学研究生研究网络
- 批准号:
2014027 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
RoL: FELS: RAISE: Balancing demands of Minimal Cell
RoL:FELS:RAISE:平衡最小单元的需求
- 批准号:
1840320 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Simulating a minimal cell: Integrating experiment and theory
模拟最小细胞:实验与理论相结合
- 批准号:
1818344 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Molecular Modeling of Bioenergetic Systems
生物能系统的分子建模
- 批准号:
1616590 - 财政年份:2016
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
RAPID: Development of Rapid In-Field Ebola Infection Screening Guided by Biomolecular Simulation and Collaborative Remote Visualization
RAPID:生物分子模拟和协作远程可视化引导下的快速现场埃博拉感染筛查的发展
- 批准号:
1524703 - 财政年份:2015
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: PoLS Student Research Network
合作研究:PoLS 学生研究网络
- 批准号:
1505008 - 财政年份:2015
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Evolution of Translation: From molecules to cells
翻译的演变:从分子到细胞
- 批准号:
1244570 - 财政年份:2013
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Travel Award for Workshop "Towards in Silico Biological Cells: Bridging Experiments and Simulations" Lausanne, Switzerland
瑞士洛桑“迈向硅生物细胞:桥接实验与模拟”研讨会旅行奖
- 批准号:
1243438 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: PoLS Student Research Network
合作研究:PoLS 学生研究网络
- 批准号:
1026550 - 财政年份:2010
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
相似海外基金
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Cross-Pollination Skillsets: Growing Mechatronics and Agricultural Collaborations for Producing Skilled Agricultural Technicians
异花授粉技能:不断发展机电一体化和农业合作,培养熟练的农业技术人员
- 批准号:
2350254 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Shear Innovation: Valorising wool waste using biotechnology to enhance horticultural peat-free growing media
剪切创新:利用生物技术提高羊毛废料的价值,以增强园艺无泥炭生长介质
- 批准号:
10106787 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Launchpad
BullNet-Sperm biology and associated reproductive biotechnologies to assist the dairy and beef industries meet growing demands
BullNet-精子生物学和相关生殖生物技术可帮助乳制品和牛肉行业满足不断增长的需求
- 批准号:
EP/Y032098/1 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Research Grant
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Innovation Loans
Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
- 批准号:
2426095 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
BullNet-Sperm biology and associated reproductive biotechnologies to assist the dairy and beef industries meet growing demands
BullNet-精子生物学和相关生殖生物技术可帮助乳制品和牛肉行业满足不断增长的需求
- 批准号:
EP/Y032128/1 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Research Grant
Growing Prosperity through Financial Inclusion: “FinBridge” - Fintech Data to Bridge the Trust-Gap between Mainstream Financial Service Providers and Diaspora Communities in the UK and other Financially Underserved Minorities
通过金融包容性促进繁荣:“FinBridge” - 金融科技数据弥合主流金融服务提供商与英国侨民社区和其他金融服务不足的少数群体之间的信任差距
- 批准号:
10095550 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Collaborative R&D
WHyGro-in-Me: Waste-based Hybrid Growing Media for PACE Horticulture using biobased polyurethane binders and biowaste filler
WHyGro-in-Me:使用生物基聚氨酯粘合剂和生物废物填料的 PACE 园艺废物基混合生长介质
- 批准号:
BB/Z514433/1 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Soft Growing Robots for Mobility Support
NSF 融合加速器轨道 M:用于移动支持的软生长机器人
- 批准号:
2344314 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant