CAS-Climate:Collaborative Research:Understanding How Electrochemical Cation Trapping in Metal Oxides Enhances Subsequent Reversible Insertion of Anions in Forming Metal Oxyhalides

CAS-气候:合作研究:了解金属氧化物中的电化学阳离子捕获如何增强随后形成金属卤氧化物时阴离子的可逆插入

基本信息

  • 批准号:
    2221646
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Non-technical Abstract: Greater adoption of renewable energy sources necessitates economical and scalable electric-energy storage solutions. Novel battery chemistry holds the key to much-needed next-generation electric energy storage technologies to enable a sustainable society. Conventional batteries utilize cation-focused battery chemistry, which means positively charged ions migrate during the charge and discharge of a battery. With this project, supported by the Ceramics program in the Division of Materials Research, researchers at Oregon State University and Vanderbilt University investigate a possible mechanism for anion-based batteries (with migrating negatively charged ions instead of positively charged ones) for grid storage. Anion batteries have a great potential to replace current cation batteries for scalable energy storage, but fundamental mechanistic understanding is lacking. The project generates knowledge about what chemical environment in the metal-oxide battery material is more suitable for the transport and storage of anions during battery operation. Only sustainable, earth-abundant elements are investigated in the project for the electrodes, including manganese- and iron-based oxides, halide ions, and hydroxide; they are coupled with inexpensive and safe aqueous electrolytes. The new battery chemistry, if developed successfully, will greatly benefit our society by providing a low-cost, environmentally friendly energy-storage solution in the future. As part of the project the PIs introduce state-of-the-art materials research of novel battery chemistry to students from underserved communities and disseminate the knowledge to the public through institutional tools such as an online course.Technical Abstract:The knowledge of electrochemical anion insertion in hosts remains limited, particularly when the hosts are metal oxides. Anion insertion in metal oxides is inherently challenging because the interstitials are lined with oxides that repulse incoming anions. This project, supported by the Ceramics program in the Division of Materials Research, precisely tackles this problem by transforming the local structures of metal oxides with trapped cations. Researchers at Oregon State University and Vanderbilt University elucidate a new ion insertion mechanism whereby the irreversible insertion of cations in metal oxides promotes the reversible anion storage to form metal oxyhalides. Their research tests the central hypothesis that cation trapping transforms the structure of metal oxides and the chemical environment such that the subsequent anion insertion is greatly enhanced. They elucidate how the cation trapping alters the local structures of metal oxides and how the anions interact with the trapped cations and advance our understanding of the chemical environment and the changes caused by cation trapping and the anion insertion. Utilizing the synergy of expertise in electrochemical and structural characterization and first principles predictive modeling, the researchers establish mechanistic understandings of this new mechanism by investigating the model structure of spinel Mn3O4, in which the trapped Zn-ions enhances chloride storage. The project also develops a general principle of the new mechanism across different cations to be trapped, metal oxides as hosts, and anion charge carriers. Additionally, the integrated experimental and computation studies lay the foundation for a promising new research field using anion insertion to form metal oxyhalides.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要:更多地采用可再生能源需要经济和可扩展的电能存储解决方案。新型电池化学是实现可持续社会所需的下一代电能存储技术的关键。传统电池利用以阳离子为中心的电池化学,这意味着带正电荷的离子在电池充放电过程中迁移。在这个项目中,俄勒冈州立大学和范德比尔特大学的研究人员在材料研究部的陶瓷项目的支持下,研究了阴离子电池(用带负电荷的离子而不是带正电荷的离子迁移)用于电网存储的可能机制。阴离子电池有很大的潜力取代目前的阳离子电池进行可扩展的能量存储,但缺乏基本的机制理解。该项目产生了关于金属氧化物电池材料中哪种化学环境更适合电池运行过程中阴离子的运输和储存的知识。该项目只研究可持续的、地球上丰富的元素,包括锰基和铁基氧化物、卤化物离子和氢氧化物;它们与廉价和安全的水电解质结合在一起。新的电池化学,如果开发成功,将极大地造福我们的社会,通过提供一个低成本,环保的能源存储解决方案在未来。作为该项目的一部分,pi向来自服务欠缺社区的学生介绍最新的新型电池化学材料研究,并通过在线课程等机构工具向公众传播知识。技术摘要:寄主中电化学阴离子插入的知识仍然有限,特别是当寄主是金属氧化物时。阴离子在金属氧化物中的插入本身就是一项挑战,因为在金属氧化物的间隙中,氧化物会排斥进入的阴离子。该项目由材料研究部陶瓷项目支持,通过用捕获阳离子改变金属氧化物的局部结构,精确地解决了这个问题。俄勒冈州立大学和范德比尔特大学的研究人员阐明了一种新的离子插入机制,即阳离子在金属氧化物中的不可逆插入促进了可逆阴离子的储存,从而形成金属氧卤化物。他们的研究验证了一个中心假设,即阳离子捕获改变了金属氧化物的结构和化学环境,从而大大增强了随后的阴离子插入。他们阐明了阳离子捕获如何改变金属氧化物的局部结构以及阴离子如何与捕获的阳离子相互作用,并促进了我们对化学环境以及阳离子捕获和阴离子插入引起的变化的理解。利用电化学和结构表征的专业知识以及第一性原理预测建模的协同作用,研究人员通过研究尖晶石Mn3O4的模型结构,建立了对这种新机制的机理理解,其中捕获的zn离子增强了氯化物的储存。该项目还开发了跨不同阳离子被捕获、金属氧化物作为宿主和阴离子电荷载体的新机制的一般原理。此外,实验与计算相结合的研究为阴离子插入形成金属氧卤化物的新研究领域奠定了基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reversible Cl 2 /Cl – Redox for Low-Temperature Aqueous Batteries
用于低温水系电池的可逆 Cl 2 /Cl → 氧化还原
  • DOI:
    10.1021/acsenergylett.2c02757
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Sui, Yiming;Lei, Ming;Yu, Mingliang;Scida, Alexis;Sandstrom, Sean K.;Stickle, William;O’Larey, Timothy D.;Jiang, De-en;Ji, Xiulei
  • 通讯作者:
    Ji, Xiulei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

De-en Jiang其他文献

Capacitive Energy Extraction by Few-Layer Graphene Electrodes
通过少层石墨烯电极提取电容能量
  • DOI:
    10.1021/acs.jpcc.7b02827
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng Lian;Cheng Zhan;De-en Jiang;Honglai Liu;Jianzhong Wu
  • 通讯作者:
    Jianzhong Wu
Au-19 Nanocluster Featuring a V-Shaped Alkynyl-Gold Motif
Au-19 纳米团簇具有 V 形炔基金基序
  • DOI:
    10.1021/ja512133a
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Xian-Kai Wan;Qing Tang;Shang-Fu Yuan;De-en Jiang;Quan-Ming Wang
  • 通讯作者:
    Quan-Ming Wang
Substitution Effect Guided Synthesis of Task-Specific Nanoporous Polycarbazoles with Enhanced Carbon Capture
替代效应引导合成具有增强碳捕获功能的特定任务纳米多孔聚咔唑
  • DOI:
    10.1021/acs.macromol.6b01342
  • 发表时间:
    2016-07
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Feng Jiang;Tian Jin;Xiang Zhu;Ziqi Tian;Chi-Linh Do-Thanh;Jun Hu;De-en Jiang;Hualin Wang;Honglai Liu;Sheng Dai
  • 通讯作者:
    Sheng Dai
Tuning metal-support interactions in nickel–zeolite catalysts leads to enhanced stability during dry reforming of methane
调节镍-沸石催化剂中的金属-载体相互作用可提高甲烷干重整过程中的稳定性
  • DOI:
    10.1038/s41467-024-50729-8
  • 发表时间:
    2024-10-03
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Junyan Zhang;Yuanyuan Li;Haohong Song;Lihua Zhang;Yiqing Wu;Yang He;Lu Ma;Jiyun Hong;Akhil Tayal;Nebojsa Marinkovic;De-en Jiang;Zhenglong Li;Zili Wu;Felipe Polo-Garzon
  • 通讯作者:
    Felipe Polo-Garzon
Nested Keplerian architecture of [Cusub58/subHsub20/sub(SPr)sub36/sub(PPhsub3/sub)sub8/sub]sup2+/sup nanoclusters
[Cusub58/subHsub20/sub(SPr)sub36/sub(PPhsub3/sub)sub8/sub]sup2+/sup 纳米团簇的嵌套开普勒结构
  • DOI:
    10.1039/d3cc01811c
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Sourav Biswas;Sakiat Hossian;Taiga Kosaka;Jin Sakai;Daichi Arima;Yoshiki Niihori;Masaaki Mitsui;De-en Jiang;Saikat Das;Song Wang;Yuichi Negishi
  • 通讯作者:
    Yuichi Negishi

De-en Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('De-en Jiang', 18)}}的其他基金

Collaborative Research: Electrocatalytic Synthesis of Heterocycles from Biomass-Derived Furanics via Immobilized 1st-Row Transition Metal Catalysts
合作研究:通过固定化第一行过渡金属催化剂从生物质衍生的呋喃中电催化合成杂环化合物
  • 批准号:
    2245564
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrocatalytic Synthesis of Heterocycles from Biomass-Derived Furanics via Immobilized 1st-Row Transition Metal Catalysts
合作研究:通过固定化第一行过渡金属催化剂从生物质衍生的呋喃中电催化合成杂环化合物
  • 批准号:
    2102191
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Highly Selective Photocatalysis on TiO2 with Atomically Dispersed Active Centers
合作研究:具有原子分散活性中心的二氧化钛的高选择性光催化
  • 批准号:
    1924545
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
  • 批准号:
    2241892
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308679
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243100
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
  • 批准号:
    2241893
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Structure, Dynamics, and Reaction Mechanism of Supported Single Atom for Photocatalytic CO2 Reduction
合作研究:CAS-气候:光催化CO2还原的负载单原子的结构、动力学和反应机制
  • 批准号:
    2321203
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
  • 批准号:
    2210811
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS - Climate: Improving Nonstationary Intensity-Duration-Frequency Analysis of Extreme Precipitation by Advancing Knowledge on the Generating Mechanisms
合作研究:CAS - 气候:通过增进对生成机制的认识来改进极端降水的非平稳强度-持续时间-频率分析
  • 批准号:
    2221803
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Nonstationarity of Compound Coastal Floods in the Anthropocene
合作研究:CAS-气候:人类世复合沿海洪水的非平稳性
  • 批准号:
    2223894
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了