I-Corps: Automated sound analysis tool for early detection of arteriovenous fistula stenosis/failure in hemodialysis patients

I-Corps:自动声音分析工具,用于早期检测血液透析患者动静脉瘘狭窄/失败

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of biomedical acoustic analysis software. Sounds produced by the body often reflect underlying pathophysiological processes and are easy to collect but difficult to interpret. The proposed concept is to revolutionize auscultation, an important element of the physical exam, and transform it from a qualitative art to a quantitative science. Potential applications include the analysis of heart sounds, blood flow sounds, lung sounds, cough sounds, bowel sounds, nerve conduction sound signals, and muscle cell contraction sound signals. Early detection of potential problems from biomedical acoustic analysis may initiate the necessary preventative actions, mitigating downstream costs and improving patient quality of life. The I-Corps project is based on the development of an artificial intelligence (AI) system that is designed to detect signs of early stenosis of arteriovenous (AV) fistulas in hemodialysis patients using biomedical acoustic analysis. At points of abnormal blood vessel narrowing, turbulent flow produces distinct frequencies, vibrations, and sound characteristics from laminar flow. The proposed AI software system comprises of a machine learning model that may be used to classify fistulas as either patent or stenotic based on the acoustic signals and their relative variations along the vascular access. The machine learning model is trained on AV fistula recordings collected using a digital stethoscope and flow statuses validated by duplex ultrasound. In previous studies, the machine learning model achieved an accuracy of 80% in classifying AV fistula patency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个i-Corps项目的更广泛的影响/商业潜力是生物医学声学分析软件的开发。身体产生的声音通常反映潜在的病理生理过程,很容易收集,但很难解释。提出的概念是彻底改变听诊这一体检的重要因素,并将其从定性艺术转变为定量科学。潜在的应用包括心音、血流音、肺音、咳嗽音、肠音、神经传导音信号和肌肉细胞收缩音信号的分析。及早从生物医学声学分析中发现潜在问题可能会启动必要的预防措施,降低下游成本并提高患者的生活质量。I-Corps项目基于人工智能(AI)系统的开发,该系统旨在通过生物医学声学分析检测血液透析患者动静脉(AV)瘘早期狭窄的迹象。在血管异常狭窄的地方,湍流会产生与层流不同的频率、振动和声音特征。拟议的人工智能软件系统包括一个机器学习模型,该模型可用于根据声学信号及其在血管通路上的相对变化将瘘管分类为未闭或狭窄。机器学习模型是根据使用数字听诊器收集的房室瘘记录和通过双工超声验证的血流状态进行训练的。在以前的研究中,机器学习模型在对动静脉瘘专利进行分类时达到了80%的准确率。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Shih其他文献

Improving Fairness of Automated Chest X-ray Diagnosis by Contrastive Learning
通过对比学习提高自动胸部 X 射线诊断的公平性
  • DOI:
    10.48550/arxiv.2401.15111
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingquan Lin;Tianhao Li;Zhaoyi Sun;G. Holste;Ying Ding;Fei Wang;George Shih;Yifan Peng
  • 通讯作者:
    Yifan Peng
Evaluating GPT-4 with Vision on Detection of Radiological Findings on Chest Radiographs
用视觉评估 GPT-4 对胸部 X 光片放射学结果检测的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiliang Zhou;Hanley Ong;Patrick Kennedy;Carol C Wu;Jacob Kazam;Keith Hentel;Adam Flanders;George Shih;Yifan Peng
  • 通讯作者:
    Yifan Peng
519 IDENTIFICATION OF NEPHROMETRIC VARIABLES PREDICTIVE OF RENAL IMPAIRMENT FOLLOWING PARTIAL NEPHRECTOMY
  • DOI:
    10.1016/j.juro.2010.02.595
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eugene Cha;Bryan Jeun;Casey Ng;Michael Herman;James Wysock;James DiPietro;Danielle Shehorn;George Shih;Gerald Wang;Douglas Scherr
  • 通讯作者:
    Douglas Scherr
1627 HIGH RESOLUTION MAGNETIC RESONANCE IMAGING OF HUMAN RADICAL PROSTATECTOMY SPECIMENS
  • DOI:
    10.1016/j.juro.2012.02.1444
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthieu Durand;Brian Robinson;Eric Aronowitz;Jeff Fish;Abhishek Srivastava;Prasanna Sooriakumaran;James Mtui;Danielle Brooks;Robert Leung;Naveen Gumpeni;George Shih;Amelia Ng;Jiangling Tu;Ashutosh Tewari;Douglas Ballon
  • 通讯作者:
    Douglas Ballon
Emerging Technology Commission on AI report
  • DOI:
    10.1007/s00261-020-02930-8
  • 发表时间:
    2021-01-29
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Andrew D. Smith;George Shih
  • 通讯作者:
    George Shih

George Shih的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
  • 批准号:
    10629554
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Automated lung sound analysis to improve the clinical diagnosis of pulmonary tuberculosis in children
自动肺音分析提高儿童肺结核的临床诊断
  • 批准号:
    10717389
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
  • 批准号:
    10662053
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Validation of an automated acoustic outcome measure for AdLD
AdLD 自动声学结果测量的验证
  • 批准号:
    10602982
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Validation of an automated acoustic outcome measure for AdLD
AdLD 自动声学结果测量的验证
  • 批准号:
    10739297
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Quantifying articulatory performance in children with dysarthria: Development of an automated metric for clinical use
量化构音障碍儿童的发音能力:开发用于临床的自动化指标
  • 批准号:
    10601094
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Quantifying articulatory performance in children with dysarthria: Development of an automated metric for clinical use
量化构音障碍儿童的发音能力:开发用于临床的自动化指标
  • 批准号:
    10439252
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Fully Automated Basic Life Services Resuscitation System to Improve Survival after Cardiac Arrest
全自动基本生活服务复苏系统可提高心脏骤停后的生存率
  • 批准号:
    10256435
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
CODEX System for Automated and Highly Multiplexed Immunofluorescence
用于自动化和高度多重免疫荧光的 CODEX 系统
  • 批准号:
    10177382
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
RI: Small: Sound Abstractions for Efficient and Reliable Automated Planning
RI:小型:高效可靠的自动化规划的健全抽象
  • 批准号:
    1909370
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了