An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
基本信息
- 批准号:10662053
- 负责人:
- 金额:$ 177.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAddressAdoptionAffectAlzheimer&aposs DiseaseAtrophicAwardBiodiversityBiologicalBiological FactorsBrainCertificationClassificationClimactericClinicalCognitiveCognitive deficitsCollectionComplementCountryDataDementiaDetectionDiagnosisDiagnosticDiagnostic testsDifferentiation AntigensDiseaseEarly DiagnosisEducationEnsureEnvironmentEquityFrontotemporal DementiaFunctional Magnetic Resonance ImagingFundingGleanGrainGrantImageImpaired cognitionInequityLanguageLatin AmericaLatin AmericanLatinoLatino PopulationLifeLinear RegressionsLinguisticsMachine LearningMagnetic Resonance ImagingManualsMeasuresMethodsMinorityMonitorNeurocognitiveOutcomePaperParticipantPathologyPatternPersonsPopulationPrevalencePrimary Progressive AphasiaProceduresProtocols documentationPublicationsRaceReproducibility of ResultsResearchResearch PersonnelSemanticsSiteSolidSourceSpeechSurveysSyndromeTestingTimeTrainingUnderrepresented PopulationsUnited StatesVariantVisualizationbehavioral variant frontotemporal dementiabilingualismbrain healthcerebral atrophycohortcostdeep learningdeep learning algorithmdiagnostic valuedigitalethnoracialforginghigh dimensionalityimprovedinnovationmachine learning algorithmminority communitiesmultimodal dataneuralneural correlateneuroimagingneuroprotectionnoveloutreachpredictive markerrecruitsexskillssocial culturesocial health determinantssoundstandard measuretargeted treatmenttoolunderserved minority
项目摘要
PROJECT SUMMARY
Alzheimer's disease (AD) and frontotemporal dementia (FTD) are highly prevalent in Latinos, the largest and
fastest-growing minority in the United States (US). Yet, due to financial and cultural inequities, this group is
challenged to afford standard diagnostic and monitoring procedures. Also, research on Latinos lacks scalable,
culturally valid tests and it rarely examines whether potential markers are robust across socio-biological profiles.
Such issues can be tackled with low-cost automated speech and language analyses (ASLA). Participants are
asked to produce natural speech, generating multiple acoustic (sound wave) and linguistic (e.g., semantic) data
that can be digitally extracted and analyzed to identify diseases or predict neurocognitive disruptions. Yet, ASLA
findings are minimal in Latinos. Also, most ASLA studies are small and very few ha differentiated between AD
and FTD variants, compared ASLA with standard measures, accounted for socio-biological factors (e.g., sex,
race, brain profile, bilingualism) or tested for validity across languages and dialects.
This project will develop a novel ASLA framework to jointly address such challenges. To capture socio-biological
diversity and meet requisites for robust machine and deep learning analyses, we will leverage 2740 participants.
These encompass Spanish speakers from five Latin American countries (700 AD, 700 FTD, 800 controls),
English speakers from the US (140 AD, 140 FTD, 160 controls), and US-based Latinos (30 AD, 30 FTD, 40
controls), including the main variants of each disease. This is possible due to a strategic partnership between
UCSF and the Consortium to Expand Dementia Research in Latin America, a multi-funded network bringing a
fully harmonized environment and a large, growing cohort. The Global Brain Health Institute, a dementia training
hub at UCSF, hosts expert clinicians in all sites. Speech and language data will be gleaned through our new
Toolkit to Examine Lifelike Language, a HIPPA-compliant app for speech collection, storage, and visualization,
supported by a language battery and survey. Enrollees are characterized with demographic, clinical, cognitive,
and social determinants of health measures, alongside MRI and fMRI. Our ASLA approach comprises top
predicted markers for each syndrome, added fine-grained features, and embedding features. Novel machine
and deep learning algorithms for high-dimensional settings will be used to pursue three aims.
In Aim 1, we will employ machine and deep learning to reveal the ASLA markers that best identify AD and FTD
syndromes; compare them with cognitive and imaging measures; and test them for generalizability from Spanish
onto English (a typologically different language). In Aim 2, via linear regressions, we will use optimal ASLA
markers to capture syndrome-specific patterns of cognitive dysfunction, brain atrophy, and connectivity. In Aim
3, using high-dimensional machine learning, we will test such markers for validity across diverse socio-biological
profiles, dialects, and bilingual skills (null, low, high). We will forge an affordable, scalable approach to assist
AD and FTD diagnosis in Latinos, at a time when disease-modifying therapies may emerge.
项目摘要
阿尔茨海默病(AD)和额颞叶痴呆症(FTD)在拉丁美洲人中非常普遍,是最大的和最严重的痴呆症。
美国(US)增长最快的少数民族。然而,由于经济和文化上的不平等,这一群体
难以负担标准诊断和监测程序。此外,对拉丁美洲人的研究缺乏可扩展性,
文化上有效的测试,它很少检查潜在的标志物是否在社会生物学概况中是稳健的。
这些问题可以通过低成本的自动语音和语言分析(ASLA)来解决。参与者
被要求产生自然语音,产生多个声学(声波)和语言(例如,语义)数据
这些信息可以被数字化提取和分析,以识别疾病或预测神经认知障碍。然而,ASLA
在拉丁美洲人中发现的很少。此外,大多数ASLA研究规模较小,很少有AD之间的差异。
和FTD变体,将ASLA与标准措施进行比较,说明了社会生物学因素(例如,性,
种族,大脑轮廓,双语)或测试跨语言和方言的有效性。
该项目将开发一个新的ASLA框架,以共同应对这些挑战。捕捉社会生物学
为了实现强大的机器和深度学习分析,我们将利用2740名参与者。
这些包括来自五个拉丁美洲国家的讲西班牙语的人(700 AD,700 FTD,800对照),
来自美国的讲英语者(140 AD,140 FTD,160对照)和美国拉丁美洲人(30 AD,30 FTD,40
对照),包括每种疾病的主要变异。这是由于战略伙伴关系,
UCSF和扩大拉丁美洲痴呆症研究联盟,一个多资金网络,
充分协调的环境和庞大的、不断增长的群体。全球脑健康研究所,一个痴呆症培训
加州大学旧金山分校的中心,接待所有地点的临床专家。语音和语言数据将通过我们新的
Toolkit to Examine Lifelike Language是一款符合HIPPA标准的语音收集、存储和可视化应用程序,
并辅以语言测试和调查。入选者的特征是人口统计学、临床、认知、
和健康措施的社会决定因素,以及MRI和fMRI。我们的ASLA方法包括
预测每个症状的标记,添加细粒度特征和嵌入特征。新型机器
用于高维设置的深度学习算法将用于追求三个目标。
在目标1中,我们将使用机器和深度学习来揭示最能识别AD和FTD的ASLA标志物
综合征;将其与认知和成像措施进行比较;并测试西班牙语的概括性
英语(一种不同类型的语言)。在目标2中,通过线性回归,我们将使用最佳ASLA
标记物以捕获认知功能障碍、脑萎缩和连通性的综合征特异性模式。在aim中
3,使用高维机器学习,我们将测试这些标记在不同社会生物学中的有效性
个人资料、方言和双语技能(空、低、高)。我们将制定一个负担得起的、可扩展的方法,
拉丁美洲人的AD和FTD诊断,此时可能出现疾病修饰疗法。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARIA LUISA GORNO TEMPINI其他文献
MARIA LUISA GORNO TEMPINI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARIA LUISA GORNO TEMPINI', 18)}}的其他基金
Chinese Language Assessment in Primary Progressive Aphasia
原发性进行性失语症的汉语评估
- 批准号:
10219014 - 财政年份:2021
- 资助金额:
$ 177.31万 - 项目类别:
Chinese Language Assessment in Primary Progressive Aphasia
原发性进行性失语症的汉语评估
- 批准号:
10437736 - 财政年份:2021
- 资助金额:
$ 177.31万 - 项目类别:
Dynamic Brain Imaging of Speech in Primary Progressive Aphasia
原发性进行性失语症言语的动态脑成像
- 批准号:
9766414 - 财政年份:2017
- 资助金额:
$ 177.31万 - 项目类别:
Dynamic Brain Imaging of Speech in Primary Progressive Aphasia
原发性进行性失语症言语的动态脑成像
- 批准号:
10237347 - 财政年份:2017
- 资助金额:
$ 177.31万 - 项目类别:
Dynamic Brain Imaging of Speech in Primary Progressive Aphasia
原发性进行性失语症言语的动态脑成像
- 批准号:
10740640 - 财政年份:2017
- 资助金额:
$ 177.31万 - 项目类别:
Training program in the neurology of language and neurodegenerative aphasias
语言神经病学和神经退行性失语症培训计划
- 批准号:
10216095 - 财政年份:2016
- 资助金额:
$ 177.31万 - 项目类别:
Training program in the neurology of language and neurodegenerative aphasias
语言神经病学和神经退行性失语症培训计划
- 批准号:
9307799 - 财政年份:2016
- 资助金额:
$ 177.31万 - 项目类别:
Training program in the neurology of language and neurodegenerative aphasias
语言神经病学和神经退行性失语症培训计划
- 批准号:
10677639 - 财政年份:2016
- 资助金额:
$ 177.31万 - 项目类别:
Training program in the neurology of language and neurodegenerative aphasias
语言神经病学和神经退行性失语症培训计划
- 批准号:
10449271 - 财政年份:2016
- 资助金额:
$ 177.31万 - 项目类别:
Connectomic imaging in familial and sporadic frontotemporal degeneration
家族性和散发性额颞叶变性的连接组学成像
- 批准号:
9110441 - 财政年份:2016
- 资助金额:
$ 177.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 177.31万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 177.31万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 177.31万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 177.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 177.31万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 177.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 177.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 177.31万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 177.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 177.31万 - 项目类别:
Research Grant